Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng Cauchy:
\(\left(x^2+1\right)\ge2\sqrt{x^2\cdot1}=2x\)(dấu = khi x=1)
\(\left(y^2+4\right)\ge2\sqrt{y^2\cdot4}=4y\)(dấu = khi y=2)
\(\left(z^2+9\right)\ge2\sqrt{z^2\cdot9}=6z\)(dấu = khi z=3)
\(\Rightarrow\left(x^2+1\right)\left(y^2+4\right)\left(z^2+9\right)\ge48xyz\)(dấu = khi x=1, y=2, z=3)
ĐK đề bài => x=1, y=2, z=3. Thay x, y, z vào tính được P.
x^2+4x+4 +x^4+16x^3+96x^2+256x+256= -x^3-9x^2-28x-28
(x^2+4x+4)+ ( x^4 + 16x^3 + 96x^2 + 256x+ 256) + (x^3+9x^2+28x+28)=0
x^4+ 17 x^3 + 106x^2 + 288x + 288=0
x^4+ 3x^3+ 14x^3+42x^2+ 64x^2+192x+96x+288=0
(x+3)(x^3+14x^2+64x+96)=0
(x+3)(x^3+6x^2+8x^2+48x+16x+96)=0
(x+3)(x+6)(x^2+8x+16)=0
(x+3)(x+6)(x+4)^2=0
Vậy x=-3 hay x=-6 hay x=-4
\(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow2x\left(x-1\right)=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow2x\left(x-1\right)+\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+3\right)=0\)
\(\Rightarrow x=\pm1\)
Giúp tớ mấy câu còn lại đi các cậu, tớ cần gấp lắm ạ ;;-;;
\(\left(x^2-2x+1\right)-2^2=0\)
\(\Rightarrow\left(x-1\right)^2-2^2=0\)
\(\Rightarrow\left(x-1-2\right).\left(x-1+2\right)=0\)
\(\Rightarrow\left(x-3\right).\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\)
Vậy..
p/s: 2 bài kia tương tự
(1) cho A = 4,25 x(b + 41,53 ) - 125. tim b de A co gia tri =300 . (2)