Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình thứ hai tương đương: \(5x^4-10x^3y+x^2-2xy=0\Leftrightarrow5x^3\left(x-2y\right)+x\left(x-2y\right)=0\Leftrightarrow x\left(x-2y\right)\left(5x^2+1\right)=0\)
Vì \(5x^2+1>0\)nên \(x\left(x-2y\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2y\end{cases}}\)
Đến đây bạn tự giải tiếp
\(Đk:-1\le x\le3\)
Đặt: \(\hept{\begin{cases}u=\sqrt{x+1}\\v=\sqrt{3-x}\end{cases}}\) Ta suy ra:
\(u^2=x+1\)
\(3u^2-2v^2=5x-3\)
\(4u^2-v^2=5x+1\)
\(u^2+v^2=4\)
Pt đã cho trở thành:
\(2\left(3u^2-2v^2\right)+5uv^2=3\left(4u^2-v^2\right)\Leftrightarrow6u^2\left(2-u\right)=v^2\left(u+3\right)\)
Thay \(v^2=4-u\) ta thu được pt:
\(2\left(3u^2-2v^2\right)+5uv^2=3\left(4u^2-v^2\right)\)
\(\Leftrightarrow6u^2\left(2-u\right)=\left(4-u^2\right)\left(u+3\right)\Leftrightarrow\orbr{\begin{cases}u=2\\u=\frac{5+\sqrt{145}}{10}\end{cases}}\)
Từ đó tìm đc các nghiệm của pt là: \(\orbr{\begin{cases}x=3\\x=\frac{7+\sqrt{145}}{10}\end{cases}}\)
dk \(x\ge0;2x+1\ge0< =>x\ge0\)
2(x+1)\(\sqrt{x}+\sqrt{3\left(x+1\right)^2\left(2x+1\right)}=\left(x+1\right)\left(5x^2-8x+8\right)< =>\)
\(2\sqrt{x}+\sqrt{3\left(2x+1\right)}=5x^2-8x+8\)(x+1>0 với x\(\ge0\)) <=>
2\(\sqrt{x}-2+\sqrt{6x+3}-3=5x^2-8x+3\) <=>\(\frac{2\left(x-1\right)}{\sqrt{x}+1}+\frac{6\left(x-1\right)}{\sqrt{6x+3}+3}=\left(x-1\right)\left(5x-3\right)< =>\)x-1=0 <=>x= 1 hoặc
\(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+3}=5x-3\)
x>1 thì \(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+3}< \frac{2}{1+1}+\frac{6}{3+3}=2\) hay 5x- 3<2 <=> x<1( vô lý)
x<1 thì \(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+}>2\) hay 5x-3>2 <=> x>1 (vô lý)
x=1 thỏa mãn
vậy pt có nghiệm duy nhất x=1
\(ĐKXĐ:5x^2+10x+1\ge0\)
\(pt\Leftrightarrow\sqrt{5\left(x^2+2x+1\right)-4}=8-\left(x^2+2x+1\right)\)
\(\Leftrightarrow\sqrt{5\left(x+1\right)^2-4}=8-\left(x+1\right)^2\)
Đặt \(\left(x+1\right)^2=a\left(a\ge0\right)\)
\(\Rightarrow\sqrt{5a-4}=8-a\)
Bình phương lên tìm đc a rồi xem có t/m a > 0 hay ko rồi auto làm nốt
ĐKXĐ: ...
\(5x^4+x^2-2xy+y^2=10x^3y+y^2\)
\(\Leftrightarrow5x^4-10x^3y+x^2-2xy=0\)
\(\Leftrightarrow5x^3\left(x-2y\right)+x\left(x-2y\right)=0\)
\(\Leftrightarrow x\left(x-2y\right)\left(5x^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2y\end{matrix}\right.\)
TH1: \(x=0\) đơn giản bạn tự giải
TH2: \(x=2y\)
\(\Leftrightarrow\sqrt{x+1}+\sqrt{4-x}+\sqrt{5+x-\left(x-1\right)^2}=5\)
\(\Leftrightarrow\sqrt{x+1}+\sqrt{4-x}+\sqrt{-x^2+3x+4}=5\)
Đặt \(\sqrt{x+1}+\sqrt{4-x}=t>0\)
\(\Rightarrow\sqrt{-x^2+3x+4}=t^2-5\)
Phương trình trở thành:
\(t+t^2-5=5\Leftrightarrow t^2+t-10=0\) \(\Rightarrow t=\frac{-1+\sqrt{41}}{2}\)
\(\Leftrightarrow\sqrt{-x^2+3x+4}=t^2-5=\frac{11-\sqrt{41}}{2}\)
\(\Leftrightarrow-x^2+3x+4=\frac{81-11\sqrt{41}}{2}\)
Pt xấu quá, bạn tự chuyển vế bấm máy