\(\left|x-2017\right|^{2017}+\left|x-2018\right|^{2018}=1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2018

+)Nếu x < 2017 => x - 2018 = -1 => \(\left|x-2018\right|\)> 1

=> \(\left|x-2018\right|^{2018}\) >1

=> x < 2017 ko thỏa mãn

+) Nếu x = 2017 => x - 2018 = -1 => \(\left|x-2018\right|\) = 1

=> \(\left|x-2018\right|^{2018}=1\)

=> | x − 2017 | 2017 + | x − 2018 | 2018 = 1

=> x = 2017(TM)

+) Nếu 2017< x < 2018

=> 0 < x - 2017 < 1 và 2018 - x < 1

=>| x − 2017 | 2017 + | x − 2018 | 2018 < | x − 2017 |

+) |2018- x| ≤ | x-2017+2018-x| = 1

=> | x − 2017 | 2017 + | x − 2018 | 2018 < 1

=> 2017 < x < 2019 ko thỏa mãn

+) Nếu x = 2018 => x - 2017 = 1 và x - 2018 = 0

=>| x − 2017 | 2017 + | x − 2018 | 2018 = 1

=> x = 2018 thỏa mãn

+) Nếu x > 2018 => x - 2017 > 1

=> | x − 2017 | 2017 > 1

=>| x − 2017 | 2017 + | x − 2018 | 2018 > 1

=> x > 2018 ko thỏa mãn

Vậy x = 2018 là nghiệm của pt

x = 2017 là nghiệm của pt

13 tháng 3 2018

Dễ thấy \(x=2017\)không là nghiệm của phương trình.

Ta có:

\(\frac{1+\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)^2}{1-\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)}=\frac{13}{37}\)

Đặt \(\frac{x-2018}{2017-x}=a\)

\(\Rightarrow\frac{1+a+a^2}{1-a+a^2}=\frac{13}{37}\)

\(\Leftrightarrow24a^2+50a+24=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-\frac{3}{4}\\a=-\frac{4}{3}\end{cases}}\)

27 tháng 3 2020

Có: \(\left(2018^{2018}+2017^{2018}\right)^{2017}< \left(2018^{2017}.2018+2017^{2017}.2018\right)^{2017}\)

\(=\left(2018^{2017}+2017^{2017}\right)^{2017}.2018^{2017}< \left(2018^{2017}+2017^{2017}\right)^{2017}.\left(2018^{2017}+2017^{2017}\right)\)

\(=\left(2018^{2017}+2017^{2017}\right)^{2018}\)

29 tháng 8 2018

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\Rightarrow\left(a+b+c\right)\left(ab+ac+bc\right)-abc=0\Rightarrow\left(a+b\right)\left(ab+ac+bc\right)+abc+ac^2+bc^2-abc=0\Rightarrow\left(a+b\right)\left(ab+ac+bc\right)+c^2\left(a+b\right)=0\Rightarrow\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\Rightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\Rightarrow\left[{}\begin{matrix}a+b=0\\a+c=0\\b+c=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=-b\\c=-a\\b=-c\end{matrix}\right.\)TH1: nếu a=-b

P=(a2017+b2017)(b2018-c2018)=(-b2017+b2017)(b2018-c2018)=0

TH2: nếu b=-c

P=(a2017+b2017)(b2018-c2018)=(a2017+b2017)((-c)2018-c2018)=0

Còn một TH nữa thì bạn ghi thiếu đề rồi