Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(-1\le x\le1\)
Xét \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left[\left(1+x\right)+\left(1-x\right)+\sqrt{\left(1+x\right)\left(1-x\right)}\right]\)
\(=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)\)
Khi đó phương trình đề trở thành:
\(\sqrt{1+\sqrt{1-x}}\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)=\frac{2+\sqrt{1-x^2}}{3}\)
Vì \(2+\sqrt{1-x^2}>0\)nên ta có thể chia 2 vế cho \(2+\sqrt{1-x^2}\):
\(\Rightarrow\sqrt{1+\sqrt{1-x^2}}\left(\sqrt{1+x}-\sqrt{1-x}\right)=\frac{1}{\sqrt{3}}\),Bình phương 2 vế:
\(\Rightarrow\left(1+\sqrt{1-x^2}\right)\left[\left(1+x\right)+\left(1-x\right)-2\sqrt{\left(1+x\right)\left(1-x\right)}\right]=\frac{1}{3}\)
\(\Leftrightarrow\left(1+\sqrt{1-x^2}\right)\left(2-2\sqrt{1-x^2}\right)=\frac{1}{3}\Leftrightarrow2\left(1+\sqrt{1-x^2}\right)\left(1-\sqrt{1-x^2}\right)=\frac{1}{3}\)\(\Leftrightarrow1-\left(1-x^2\right)=\frac{1}{3}\Leftrightarrow x^2=\frac{1}{6}\Leftrightarrow x=\pm\frac{1}{\sqrt{6}}\)
Ta xét phương trình đề: vế phải luôn không âm vì vậy vế trái phải không âm
Khi đó \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\ge0\Leftrightarrow1+x\ge1-x\Leftrightarrow x\ge0\)
Vậy ta chỉ nhận nghiệm duy nhất là \(x=\frac{1}{\sqrt{6}}\)
$[\sqrt[3]{1}]+[\sqrt[3]{2}]+...+[\sqrt[3]{x^{3}-1}]=855$. - Số học - Diễn đàn Toán học
Đặt \(\hept{\begin{cases}\sqrt[3]{2-x}=a\\\sqrt[3]{x+7}=b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a^2+b^2-ab=3\\a^3+b^3=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^2+b^2-ab=3\\\left(a+b\right)\left(a^2-ab+b^2\right)=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^2+b^2-ab=3\\a+b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=2\end{cases}}\)hoặc \(\hept{\begin{cases}a=2\\b=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-6\end{cases}}\)
Đặt \(t=\sqrt{x}-2\) , pt trở thành
\(\left(t+1\right)^3+\left(t-1\right)^3=8t^3\Leftrightarrow t^3+3t^2+3t+1+t^3-3t^2+3t-1=8t^3\)
\(\Leftrightarrow6t^3-6t=0\Leftrightarrow t\left(t-1\right)\left(t+1\right)=0\)
=> t = 0 hoặc t = 1 hoặc t = -1
Từ đó suy ra x.
ko ai giải đc à