K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2017

còn đây là câu b

\(\frac{3x-2-30}{6}=\frac{3-2x-14}{4}\)

\(\Leftrightarrow\frac{3x-32}{6}-\frac{-11-2x}{4}=0\)

\(\Leftrightarrow\frac{6x-64+33+6x}{12}\)

\(\Leftrightarrow12x=31\)

\(\Leftrightarrow x=\frac{31}{12}\)

18 tháng 6 2017

\(\frac{10x-10+4-21x+3}{12}=\frac{4x+3-35}{7}\)

\(\Leftrightarrow\frac{-11x-3}{12}=\frac{4x-3}{7}\)

\(\Leftrightarrow\frac{-11x-3}{12}-\frac{4x-3}{7}=0\)

\(\frac{-77x-21-48x+36}{84}=0\)

\(\Leftrightarrow125x=15\)

\(\Leftrightarrow x=\frac{3}{25}\)

tớ ko bt lm abc , tớ lm d thôi nha , thứ lỗi 

\(\frac{5}{2x-3}-\frac{1}{x+2}=\frac{5}{x-6}-\frac{7}{2x-1}\)

\(\frac{3x+13}{2x^2+x-6}=\frac{5}{x-6}+\frac{7}{1-2x}\)

\(\frac{3x+13}{\left(x+2\right)\left(2x-3\right)}=\frac{3x+37}{\left(x-6\right)\left(2x-1\right)}\)

\(\frac{10-9x}{-4x^3+32x^2-51x+18}=0\)

\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{10}{9}\end{cases}}\)

2 tháng 3 2019

Cho x,y,z là các sô dương.Chứng minh rằng x/2x+y+z+y/2y+z+x+z/2z+x+y<=3/4

20 tháng 1 2019

a) <=> \(6x^2-5x+3-2x+3x\left(3-2x\right)=0\)

<=> \(6x^2-5x+3-2x+9x-6x^2=0\)

<=> \(2x+3=0\)

<=> \(x=\frac{-3}{2}\)

b) <=> \(10\left(x-4\right)-2\left(3+2x\right)=20x+4\left(1-x\right)\)

<=> \(10x-40-6-4x=20x+4-4x\)

<=> \(6x-46-16x-4=0\)

<=> \(-10x-50=0\)

<=> \(-10\left(x+5\right)=0\)

<=> \(x+5=0\)

<=> \(x=-5\)

c) <=> \(8x+3\left(3x-5\right)=18\left(2x-1\right)-14\)

<=> \(8x+9x-15=36x-18-14\)

<=> \(8x+9x-36x=+15-18-14\)

<=> \(-19x=-14\)

<=> \(x=\frac{14}{19}\)

d) <=>\(2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)

<=> \(12x+10-10x-3=8x+4x+2\)

<=> \(2x-7=12x+2\)

<=> \(2x-12x=7+2\)

<=> \(-10x=9\)

<=> \(x=\frac{-9}{10}\)

e) <=> \(x^2-16-6x+4=\left(x-4\right)^2\)

<=> \(x^2-6x-12-\left(x-4^2\right)=0\)

<=> \(x^2-6x-12-\left(x^2-8x+16\right)=0\)

<=> \(x^2-6x-12-x^2+8x-16=0\)

<=> \(2x-28=0\)

<=> \(2\left(x-14\right)=0\)

<=> x-14=0

<=> x=14

20 tháng 1 2019

Luffy , cậu sai câu c nhé , kia là -17 ạ => x=17/19

8 tháng 1 2018

Ta có :\(pt\Leftrightarrow\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-2}.\frac{x-2}{x-4}-3\left(\frac{2\left(x-2\right)}{x-4}\right)^2=0\)

Đặt \(\frac{x+1}{x-2}=a;\frac{x-2}{x-4}=b\)

\(\Rightarrow a^2+ab-6b^2=0\)\(\Leftrightarrow\left(a+3b\right)\left(a-2b\right)=0\Rightarrow\orbr{\begin{cases}a+3b=0\\a-2b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=-3b\\a=2b\end{cases}}}\)

Đến đây thao vào giải tiếp

9 tháng 1 2018

Ta có :\(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-3\left(\frac{2x-4}{x-4}\right)^2=0\)(1)

<=> \(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-2}.\frac{x-2}{x-4}-3\left[\frac{2\left(x-2\right)}{x-4}\right]^2=0\)

<=> \(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-2}.\frac{x-2}{x-4}-12\left(\frac{x-2}{x-4}\right)^2=0\)

Đặt \(\frac{x+1}{x-2}=a\)\(\frac{x-2}{x-4}=b\)

khi đó (1) <=> \(a^2+ab-12b^2=0\)

<=> \(a^2+4ab-3ab-12b^2=0\)

<=>  \(a\left(a+4b\right)-3b\left(a+4b\right)=0\)

<=> \(\left(a+4b\right)\left(a-3b\right)=0\)

<=> \(\orbr{\begin{cases}a+4b=0\\a-3b=0\end{cases}}\)<=> \(\orbr{\begin{cases}a=-4b\\a=3b\end{cases}}\)

tôi mới làm ngang đây thì chịu rồi giải tiếp giúp tôi với! OK?

29 tháng 2 2020

\(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-3\left(\frac{2x-4}{x-4}\right)^2=0\)

\(\Leftrightarrow\frac{\left(x+1\right)^2}{\left(x-2\right)^2}+\frac{x+1}{x-4}-\frac{3\left(2x-4\right)^2}{\left(x-4\right)^2}=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x-4\right)^2+\left(x+1\right)\left(x-2\right)^2\left(x-4\right)-3\left(2x-4\right)^2\left(x-2\right)^2=0\)

\(\Leftrightarrow-\left(x-3\right)\left(5x-4\right)\left(2x^2-9x+16\right)=0\)

Mà \(2x^2-6x+16\ne0\) nên:

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\5x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{4}{5}\end{cases}}\)

Vậy: nghiệm phương trình là: \(x=3;x=\frac{4}{5}\)

28 tháng 2 2020

Bạn đặt ẩn phụ và làm nhé :
Đặt \(a=\frac{x+1}{x-2},b=\frac{x-2}{x-4}\Rightarrow ab=\frac{x+1}{x-4}\)

Khi đó pt có dạng :
\(a^2+ab-12b^2=0\)