Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐKXĐ:x\ne\pm3\)
Đặt \(\frac{x+2}{x-3}=a;\frac{x-2}{x+3}=b\)
Ta có:
\(pt\Leftrightarrow3a^2+8ab=3b^2\)
\(\Leftrightarrow3a^2+8ab-3b^2=0\)
\(\Leftrightarrow\left(3a-b\right)\left(3b+a\right)=0\)
\(\Leftrightarrow3a=b;3b=-a\)
Đến đây bạn thay vào làm nhá,giải như pt bậc 2 thôi
rút 4 ra ngoài nhan bạn 4(2(x+1/x)^2+(x^2+1/x^2)^2-(x^2+1/x^2)(x+1/x)^2=(x+4)^2
mik xét cái này cho dễ nhìn nhan
2(x+1/x)^2-(x^2+1/x^2)(x+1/x)^2
= (x+1/x)^2(2-x^2-1/x^2)
= -(x+1/x)^2(x^2-2+1/x^2)
= -(x+1/x)^2(x-1/x)^2=-(x^2-1/x^2)^2
thế ở trên ta có
4(-(x^2-1/x^2)^2+(x^2+1/x^2)^2)=(x+4)^2
4(-x^4+2-1/x^4+x^4+2+1/x^4)=x^2+8x+16
4.4=x^2+8x+16
suy ra x^2+8x=0
x(x+8)=0
suy ra x=0 hoặc x=-8
mak nhìn để bài thì x=0 ko được nên x=-8
a,\(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)
Ta có: \(x^2+5\ge0\) (vô lí)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-6\end{cases}}\)
Vậy ....
c, \(4x^2\left(x-1\right)-x+1=0\)
\(\Leftrightarrow4x^3-4x^2-x+1=0\)
\(\Leftrightarrow4x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(4x^2-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x^2-1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}4x^2=1\\x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=\frac{1}{4}\\x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm\frac{1}{2}\\x=1\end{cases}}\)
Vậy ....
\(\frac{x+2}{x+3}-\frac{x+1}{x-1}=\frac{4}{\left(x-1\right)\left(x+3\right)}\)
ĐKXĐ: \(x\ne1,x\ne-3\)
PT đã cho \(\Leftrightarrow\frac{\left(x+2\right).\left(x-1\right)-\left(x+1\right).\left(x+3\right)}{\left(x+3\right).\left(x-1\right)}=\frac{4}{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{\left(x+2\right).\left(x-1\right)-\left(x+1\right).\left(x+3\right)}{\left(x+3\right).\left(x-1\right)}=\frac{4}{\left(x-1\right)\left(x+3\right)}\)
\(\Rightarrow x^2+x-2-x^2-4x-3=4\Leftrightarrow3x=-1\Leftrightarrow x=\frac{-1}{3}\)
a) \(\left(x-\frac{3}{4}\right)^2+\left(x-\frac{3}{4}\right)\cdot\left(x-\frac{1}{2}\right)=0\)
\(\Leftrightarrow\left(x-\frac{3}{4}\right)\left(x-\frac{3}{4}+x-\frac{1}{2}\right)=0\)
\(\Leftrightarrow\left(x-\frac{3}{4}\right)\left(2x-\frac{5}{4}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{4}=0\\2x-\frac{5}{4}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=\frac{5}{8}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{3}{4};\frac{5}{8}\right\}\)
b) ĐK : x khác 0
\(\frac{1}{x}+2=\left(\frac{1}{x}+2\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{x}+2=0\\1=x^2+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{x}=-2\\x^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\left(tm\right)\\x=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{1}{2}\right\}\)
Câu 1:
a)\(x^2-4+\left(x-2\right)\left(2x+1\right)=0\)
\(\Rightarrow x^2-4+2x^2+x-4x-2=0\)
\(\Rightarrow3x^2-3x-6=0\)
\(\Rightarrow x^2-x-2=0\)(Vì nhân tử chung là 3 thì ra bằng 0)
\(\Rightarrow x^2-2x+x-2=0\)
\(\Rightarrow\left(x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
Vậy x=-1;2
Câu 2:
a)\(ĐKXĐ:X\ne1;X\ne-1;X\ne-2;\)
b)\(\frac{x+1}{x-1}-\frac{x-1}{x+2}=\frac{3}{x^2-1}\)(\(ĐKXĐ:X\ne1;X\ne-1;X\ne-2;\))
\(\Rightarrow\frac{\left(x+1\right)^2\left(x+2\right)}{\left(x^2-1\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-1^{ }\right)^2}{\left(x^2-1\right)\left(x+2\right)}=\frac{3\left(x+2\right)}{\left(x^2-1\right)\left(x+2\right)}\)
\(\Rightarrow\left(x+1\right)^2\left(x+2\right)-\left(x+1\right)\left(x-1\right)^2=3x+6\)
\(\Rightarrow\left(x+1\right)\left[\left(x+1\right)\left(x+2\right)-\left(x-1\right)^2\right]=3x+6\)
\(\Rightarrow\left(x+1\right)\left[x^2+3x+2-x^2+2x-1\right]=3x+6\)
\(\Rightarrow\left(x+1\right)\left[5x+1\right]=3x+6\)
\(\Rightarrow5x^2+6x+1-3x-6=0\)
\(\Rightarrow5x^2+3x-5=0\)
\(\Rightarrow x=0,745\left(TM\right)\)
a)Ta có:\(1-2x=\frac{-7x-11}{5}\)
\(\Rightarrow\frac{5-10x}{5}=\frac{-7x-11}{5}\)
\(\Rightarrow5-10x=-7x-11\)
\(\Rightarrow5-10x+7x+11=0\)
\(\Rightarrow16-3x=0\)
\(\Rightarrow x=\frac{16}{3}\)
\(\left(\frac{x-1}{x+2}\right)^2-4\left(\frac{x^2-1}{x^2-4}\right)^2+3\left(\frac{x+1}{x-2}\right)^2=0\left(1\right)\)
\(ĐKXĐ:x\ne\pm2\)
Đặt \(\frac{x-1}{x+2}=a;\frac{x+1}{x-2}=b\)
=> Phương trình (1) <=> \(a^2-4ab+3b^2=0\)
\(\Leftrightarrow a^2-3ab-ab+3b^2=0\)
\(\Leftrightarrow a\left(a-b\right)-3b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-3b=0\\a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=3b\\a=b\end{cases}}}\)
=> \(b=0;a=0\)
Bạn cùng trường :">