Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.2}+\frac{1}{3.4}+....+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}-2.\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{100}\right)\)
\(=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}-1-\frac{1}{2}-\frac{1}{3}-....-\frac{1}{50}=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
=> \(2013x.\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)=2013x.\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)
=> \(2013x.\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)=2012.\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\Rightarrow2013x=2012\Rightarrow x=\frac{2012}{2013}\)
Vậy \(x=\frac{2012}{2013}\)
p/s: --trình bày sai sót mong bỏ qua
\(\dfrac{x-1}{2012}+\dfrac{x-2}{2011}+\dfrac{x-3}{2010}+...+\dfrac{x-2012}{1}=2012\)
<=>\(\dfrac{x-1}{2012}-1+\dfrac{x-2}{2011}-1+\dfrac{x-3}{2010}-1+...+\dfrac{x-2012}{1}-1=0\)
<=>\(\dfrac{x-2013}{2012}+\dfrac{x-2013}{2011}+\dfrac{x-2013}{2010}+...+\dfrac{x-2013}{1}=0\)
<=>\(\left(x-2013\right)\left(\dfrac{1}{2012}+\dfrac{1}{2011}+...+1\right)=0\)
do 1/2012+1/2011....+1 khác 0 =>x-2013=0<=>x=2013
vậy..........................
\(\dfrac{x-1}{2012}+\dfrac{x-2}{2011}+\dfrac{x-3}{2010}+...+\dfrac{x-2012}{1}=2012\)
\(\left(\dfrac{x-1}{2012}+\dfrac{x-2}{2011}+\dfrac{x-3}{2010}+...+\dfrac{x-2012}{1}\right)-2012=0\)
\(\Rightarrow\dfrac{x-2013}{2012}+\dfrac{x-2013}{2011}+\dfrac{x-2013}{2010}+...+\dfrac{x-2013}{1}=0\)
\(\Rightarrow x-2013\left(\dfrac{1}{2012}+\dfrac{1}{2011}+\dfrac{1}{2010}+...+\dfrac{1}{1}\right)=0\)
Vì \(x-2013\left(\dfrac{1}{2012}+\dfrac{1}{2011}+\dfrac{1}{2010}+...+\dfrac{1}{1}\right)=0\)nên x - 2013 hoặc \(\dfrac{1}{2012}+\dfrac{1}{2011}+\dfrac{1}{2010}+...+\dfrac{1}{1}\) = 0. Nhưng \(\dfrac{1}{2012}+\dfrac{1}{2011}+\dfrac{1}{2010}+...+\dfrac{1}{1}\ne0\) nên x - 2013 = 0. Vì vậy x = 2013.
Vậy...
\(\dfrac{x-1}{2012}+\dfrac{x-2}{2011}+\dfrac{x-3}{2010}+...+\dfrac{x-2012}{1}=2012\)
\(\Leftrightarrow\dfrac{x-1}{2012}-1+\dfrac{x-2}{2011}-1+...+\dfrac{x-2012}{1}-1=0\)
\(\Leftrightarrow\dfrac{x-2013}{2012}+\dfrac{x-2013}{2011}+...+\dfrac{x-2013}{1}=0\)
\(\Leftrightarrow\left(x-2013\right)\left(\dfrac{1}{2012}+\dfrac{1}{2011}+...+\dfrac{1}{1}\right)=0\)
Dễ thấy: \(\dfrac{1}{2012}+\dfrac{1}{2011}+...+\dfrac{1}{1}>0\)
\(\Rightarrow x-2013=0\Rightarrow x=2013\)
Sao lại trừ 1 vậy bạn ??? mình không hiểu cho lắm mong bạn giúp đỡ
Lời giải:
Ta có:
\(\frac{x-1}{2012}+\frac{x-2}{2011}+\frac{x-3}{2010}+...+\frac{x-2012}{1}=2012\)
\(\Leftrightarrow \left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+\left(\frac{x-3}{2010}-1\right)+...+\left(\frac{x-2012}{1}-1\right)=0\)
\(\Leftrightarrow \frac{x-2013}{2012}+\frac{x-2013}{2011}+...+\frac{x-2013}{1}=0\)
\(\Leftrightarrow (x-2013)\left(\frac{1}{2012}+\frac{1}{2011}+...+1\right)=0\)
Dễ thấy \(\frac{1}{2012}+\frac{1}{2011}+...+1\neq 0\Rightarrow x-2013=0\)
\(\Leftrightarrow x=2013\)
Vậy PT có nghiệm \(x=2013\)
Lời giải:
Xét tử số:\(2+4+6+...+2x\)
Số số hạng của tổng trên là: \(\frac{2x-2}{2}+1=x\)
\(\Rightarrow 2+4+6+...+2x=\frac{(2x+2).x}{2}=x(x+1)\)
Xét mẫu số: \(1+3+5+....+(2x-1)\)
Số số hạng của tổng trên là: \(\frac{2x-1-1}{2}+1=x\)
\(\Rightarrow 1+3+5+...+(2x-1)=\frac{(2x-1+1)x}{2}=x^2\)
Do đó:
\(\frac{2+4+6+...+2x}{1+3+5+...+(2x-1)}=\frac{2012}{2011}\)
\(\Leftrightarrow \frac{x(x+1)}{x^2}=\frac{2012}{2011}\)
\(\Leftrightarrow \frac{x+1}{x}=\frac{2012}{2011}\Leftrightarrow 2011(x+1)=2012x\)
\(\Leftrightarrow x=2011\)
a/ Đặt \(x^2+x+1=a\Rightarrow x^2+x+2=a+1\)
Pt trở thành \(a\left(a+1\right)-12=0\Leftrightarrow a^2+a-12=0\)
\(\Leftrightarrow a^2-3a+4a-12=0\Leftrightarrow a\left(a-3\right)+4\left(a-3\right)=0\)
\(\Leftrightarrow\left(a-3\right)\left(a+4\right)=0\Leftrightarrow\left[{}\begin{matrix}a=3\\a=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+x+1=3\\x^2+x+1=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2+x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x+2\right)=0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
2/ \(\dfrac{x+1}{2014}+1+\dfrac{x+2}{2013}+1=\dfrac{x+3}{2012}+1+\dfrac{x+4}{2011}+1\)
\(\Leftrightarrow\dfrac{x+2015}{2014}+\dfrac{x+2015}{2013}=\dfrac{x+2015}{2012}+\dfrac{x+2015}{2011}\)
\(\Leftrightarrow\left(x+2015\right)\left(\dfrac{1}{2014}+\dfrac{1}{2013}-\dfrac{1}{2012}-\dfrac{1}{2011}\right)=0\)
\(\Leftrightarrow x+2015=0\) (do \(\dfrac{1}{2014}+\dfrac{1}{2013}-\dfrac{1}{2012}-\dfrac{1}{2011}\ne0\))
\(\Rightarrow x=-2015\)