Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\frac{x-2}{x+2}\) + \(\frac{3}{x-2}\) =\(\frac{X^2-11}{X^2-4}\)
=> MTC = ( X-2) * (X+2)
<=> \(\frac{\left(x-2\right)\cdot\left(x-2\right)}{\left(x+2\right)\cdot\left(x-2\right)}\) + \(\frac{3\cdot\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)\(\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)
=> ( x - 2 ) ( x - 2 ) + 3 ( x + 2 ) = \(x^2\)- 11
<=>( \(x^2\)- 4x + 4 ) + 3x + 6 = \(x^2\)- 11
=> \(x^2\)- 4x + 4 + 3x + 6 = \(x^2\)- 11
=> \(x^2\)- 4x + 4 + 3x +6 - \(x^2\)- 11 = 0
=> -x + 10 = 0
=> -x = -10
=> x = 10
các câu tiếp tương tự :)
Bài làm
@Đặng Đặng: khi chuyển vế (-11 ) bạn không đổi dấu nên dẫn đến bị sai rồi.
a) \(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\) ĐKXĐ: \(x\ne\pm2\)
\(\Rightarrow\left(x-2\right)\left(x-2\right)+3\left(x+2\right)=x^2-11\)
\(\Leftrightarrow x^2-4x+4+3x+6=x^2-11\)
\(\Leftrightarrow-x=-21\)
\(\Leftrightarrow x=21\) ( thỏa mãn điều kiện xác định )
Vậy x = 21 là nghiệm phương trình.
b) \(\frac{1}{x-1}+\frac{2}{x+1}=\frac{x}{x^2-1}\) ĐKXĐ: \(x\ne\pm1\)
\(\Rightarrow\left(x+1\right)+2\left(x-1\right)=x\)
\(\Leftrightarrow x+1+2x-2=x\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\) ( TMĐKXĐ )
Vậy x = 1/2 là nghiệm phương trình.
c) \(\frac{2}{x-1}+\frac{x^2+5}{\left(x+1\right)\left(x-2\right)}=\frac{1}{\left(x-2\right)}\)
\(\Leftrightarrow\frac{2\left(x+1\right)\left(x-2\right)}{\left(x-1\right)\left(x+1\right)\left(x-2\right)}+\frac{\left(x^2+5\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x-2\right)}=\frac{1\left(x+1\right)\left(x-1\right)}{\left(x-2\right)\left(x+1\right)\left(x-1\right)}\)
\(\Rightarrow\left(2x+1\right)\left(x-2\right)+\left(x^2+5\right)\left(x-1\right)=1\left(x^2-1\right)\)
\(\Leftrightarrow2x^2-4x+x-2+x^3-x^2+5x-5=x^2-1\)
\(\Leftrightarrow x^3+2x-6=0\)
~ Đến đây tự lm tiếp ~
\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{16}{x^2-1}\)
\(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{16}{x^2-1}\)
\(\Rightarrow\left(x+1\right)^2-\left(x-1\right)^2=16\)
\(\Rightarrow\left(x+1-x+1\right)\left(x+1+x-1\right)=16\)
\(\Rightarrow2\left(2x\right)=16\)
\(\Rightarrow4x=16\)
\(\Rightarrow x=4\)
vậy \(x=4\)
\(\frac{6x+1}{x^2-7x+10}+\frac{5}{x-2}=\frac{3}{x-5}\)
\(\frac{6x+1}{\left(x-2\right)\left(x-5\right)}+\frac{5\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}=\frac{3\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}\)
\(\Rightarrow6x+1+5x-5=3x-6\)
\(\Rightarrow11x-3x=-6+4\)
\(\Rightarrow8x=-2\)
\(\Rightarrow x=\frac{-1}{4}\)
3) \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
\(\frac{x^2+x+1}{x^3-1}+\frac{\left(2x^2-5\right)}{x^3-1}=\frac{4\left(x-1\right)}{x^3-1}\)
\(\Rightarrow x^2+x+1+2x^2-5=4x-4\)
\(\Rightarrow3x^2-3x=-4+4\)
\(\Rightarrow3x\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
ĐKXĐ: \(x\ne\pm1\)
Ta có: \(\frac{x-1}{x+1}-\frac{x^2+x-2}{x+1}=\frac{x+1}{x-1}-x-2\)
=> \(\left(x-1\right)^2-\left(x^2+x-2\right)\left(x-1\right)=\left(x+1\right)^2-x\left(x^2-1\right)-2\left(x^2-1\right)\)
<=> x2 - 2x + 1 - x^3 + 3x - 2 = x2 + 2x + 1 - x3 + x - 2x2 + 2
<=> -x3 + x2 + x - 1 = -x3 - x2 + 3x + 3
<=> -x3 + x2 + x - 1 + x3 + x2 - 3x - 3 = 0
<=> 2x2 - 2x - 4 = 0
<=> x2 - x - 2 = 0
<=> x2 - 2x + x - 2 = 0
<=> (x + 1)(x - 2) = 0
<=> \(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
Vậy S = {-1; 2}
kl lại. \(\orbr{\begin{cases}x=-1\left(ktm\right)\\x=2\end{cases}}\)
Vậy S = {2}
ĐKXĐ : x \(\ne\)0
\(\frac{x-1}{x^2-x+1}-\frac{x+1}{x^2+x+1}=\frac{10}{x.\left(x^4+x^2+1\right)}\)
\(\frac{\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)}{\left(x^2+1-x\right)\left(x^2+1+x\right)}=\frac{10}{x\left(x^4+x^2+1\right)}\)
\(\frac{\left(x^3-1\right)-\left(x^3+1\right)}{\left(x^2+1\right)^2-x^2}=\frac{10}{x.\left(x^4+x^2+1\right)}\)
\(\frac{-2}{x^4+x^2+1}=\frac{10}{x\left(x^4+x^2+1\right)}\)
\(-2x\left(x^4+x^2+1\right)=10\left(x^4+x^2+1\right)\)
\(\Rightarrow\)x = 10 : ( -2 ) = -5
Câu a chỉ cần quy đồng là được
Câu b tách cái mẫu thứ 3 thành (x-1)(x-2) r quy đồng 2 cái trước là được rồi
b) \(\frac{x+1}{x-1}-\frac{x+2}{x-2}=\frac{1}{x^2-3x+2}\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}-\frac{\left(x+2\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}=\frac{1}{x^2-x-2x+2}\)
\(\Leftrightarrow\frac{x^2-x-2}{\left(x-1\right)\left(x-2\right)}-\frac{x^2+x-2}{\left(x-1\right)\left(x-2\right)}=\frac{1}{x\left(x-1\right)-2\left(x-1\right)}\)
\(\Leftrightarrow\frac{-2x}{\left(x-1\right)\left(x-2\right)}=\frac{1}{\left(x-1\right)\left(x-2\right)}\)
\(\Leftrightarrow-2x=1\)
\(\Leftrightarrow x=\frac{-1}{2}\)
a) \(\frac{x^2-2x+2}{x^2+x+1}-\frac{x^2}{x^2+x+1}=\frac{3}{\left(x^4+x^2+1\right)x}\)
\(\Leftrightarrow\frac{x^2-2x+2}{x^2-x+1}.x\left(x^2-x+1\right)\left(x^2+x+1\right)-\frac{x^2}{x^2+x+1}.x\left(x^2-x+1\right)\left(x^2+x+1\right)\)\(=\frac{3}{\left(x^4+x^2+1\right)x}.x\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(\Leftrightarrow x\left(x^2-2x+2\right)\left(x^2+x+1\right)\left(x^4+x^2+1\right)-x^3\left(x^2-x+1\right)\left(x^4+x^2+1\right)\)\(=3\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(\Rightarrow x=\frac{3}{2}\)
b) làm tương tự nhé
Gợi ý :
Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)
Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)
Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)
bài 3
\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)
=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)
=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
=> x=100
\(\frac{x^2-x}{x^2-x+1}-\frac{x^2-x+2}{x^2-x-2}=1\)
\(\Leftrightarrow\frac{\left(x^2-x\right)\left(x^2-x-2\right)}{\left(x^2-x+1\right)\left(x^2-x-2\right)}-\frac{\left(x^2-x+2\right)\left(x^2-x+1\right)}{\left(x^2-x-2\right)\left(x^2-x+1\right)}=1\)
\(\Leftrightarrow\frac{x^4-x^3-2x^2-x^3+x^2+2x}{\left(x^2-x+1\right)\left(x^2-x-2\right)}-\frac{x^4-x^3+x^2-x^3+x^2-x+2x^2-2x+2}{\left(x^2-x-2\right)\left(x^2-x+1\right)}=1\)
\(\Leftrightarrow\frac{x^4-x^3-2x^2-x^3+x^2+2x-x^4+x^3-x^2+x^3-x^2+x-2x^2+2x+2}{\left(x^2-x+1\right)\left(x^2-x-2\right)}=1\)
\(\Leftrightarrow\frac{-5x^2+3x+2}{x^4-2x^3+x-2}=1\)
<=> -5x2+3x+2=x4-2x3+x-2
<=> -5x2+3x-x4+2x3-x=-2-2
<=> -5x2+2x-x4+2x3=-4
<=> 2x(1+x2)+x2(-5-x2)=-4
xong dư lào nx