Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{3}{2x-16}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{3x-102}{3x-24}\) \(ĐK:x\ne8\)
\(\Leftrightarrow\frac{3}{2\left(x-8\right)}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{3x-102}{3\left(x-8\right)}\)
\(\Leftrightarrow\frac{3.3}{6.\left(x-8\right)}+\frac{6.\left(3x-20\right)}{6\left(x-8\right)}-\frac{2\left(3x-102\right)}{6\left(x-8\right)}=\frac{-1}{8}\)
\(\Leftrightarrow\frac{9+18x-120-6x+204}{6\left(x-8\right)}=\frac{-1}{8}\)
\(\Leftrightarrow\frac{12x+93}{6\left(x-8\right)}=\frac{-1}{8}\)
\(\Leftrightarrow8\left(12x+93\right)=-6\left(x-8\right)\)
\(\Leftrightarrow96x+744=-6x+48\)
\(\Leftrightarrow102x=-696\)
\(\Leftrightarrow x=\frac{-116}{17}\) (nhận)
Vậy .....
b) \(\frac{1}{3-x}+\frac{14}{x^2-9}=\frac{x-4}{3+x}+\frac{7}{3+x}\) \(ĐK:x\ne\pm3\)
\(\Leftrightarrow\frac{1}{3-x}+\frac{14}{\left(x-3\right)\left(3+x\right)}=\frac{x-4}{3+x}+\frac{7}{3+x}\)
\(\Leftrightarrow-\frac{3+x}{\left(x-3\right)\left(3+x\right)}+\frac{14}{\left(x-3\right)\left(3+x\right)}=\frac{\left(x-4\right)\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}+\frac{7\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{-3-x+14}{\left(x-3\right)\left(x+3\right)}=\frac{\left(x-4\right)\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}+\frac{7\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}\)
\(\Leftrightarrow-3-x+14=x^2-3x-4x+12+7x-21\)
\(\Leftrightarrow x=-5\) (nhận)
Vậy ....
b) \(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15\)
=> \(\left(\frac{x-90}{10}-1\right)+\left(\frac{x-76}{12}-2\right)+\left(\frac{x-58}{14}-3\right)+\left(\frac{x-36}{16}-4\right)+\left(\frac{x-15}{17}-5\right)=0\)
=> \(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
=> \(\left(x-100\right)\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
Vì \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
=> x - 100 = 0
=> x = 100
\(\left(\frac{1}{x-1}+\frac{1}{x-4}\right)-\left(\frac{1}{x-2}+\frac{1}{x-3}\right)=0\)
\(\Leftrightarrow\frac{x-4+x-1}{\left(x-1\right).\left(x-4\right)}-\frac{x-3-x-2}{\left(x-2\right).\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{2x-5}{x^2-5x+4}-\frac{2x-5}{x^2-5x+6}=0\)
\(\Leftrightarrow\left(2x-5\right).\left(\frac{1}{x^2-5x+4}-\frac{1}{x^2-5x+6}=0\right)\)
\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\\frac{1}{x^2-5x+4}-\frac{1}{x^2-5x+6}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x^2-5x+4=x^2-5x+6\left(loai\right)\end{cases}}}\)
Vậy..
\(ĐKXĐ:x\ne2;x\ne4\)
\(\frac{x-3}{x-2}-\frac{x-2}{x-4}=3\frac{1}{5}\)
\(\Rightarrow\frac{\left(x-3\right)\left(x-4\right)-\left(x-2\right)^2}{\left(x-2\right)\left(x-4\right)}=\frac{16}{5}\)
\(\Rightarrow\frac{x^2-7x+12-x^2+4x-4}{x^2-6x+8}=\frac{16}{5}\)
\(\Rightarrow\frac{-3x+8}{x^2-6x+8}=\frac{16}{5}\)
\(\Rightarrow-3x+8=\frac{16}{5}\left(x^2-6x+8\right)\)
\(\Rightarrow-3x+8=\frac{16}{5}x^2-\frac{96}{5}x+\frac{128}{5}\)
\(\Rightarrow\frac{16}{5}x^2-\frac{81}{5}x+\frac{88}{5}=0\)
Ta có \(\Delta=\frac{81^2}{5^2}-4.\frac{16}{5}.\frac{88}{5}=\frac{929}{25},\sqrt{\Delta}=\frac{\sqrt{929}}{5}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{81+\sqrt{929}}{32}\\x=\frac{81-\sqrt{929}}{32}\end{cases}}\)
\(\frac{3}{4}\left(x^2+1\right)^2+3\left(x^2+x\right)-9=0\)
<=> \(3\left(x^2+1\right)^2.4+3\left(x^2+x\right).4-9.4=0.4\)
<=> \(3\left(x^2+1\right)^2+12\left(x^2+x\right)-36=0\)
<=> \(3x^4+18x^2+12x-33=0\)
<=> \(3\left(x-1\right)\left(x^3+x^2+7x+11\right)=0\)
<=> \(x-1=0\)
<=> \(x=1\)
Mà vì: \(x^3+x^2+7x+11\ne0\)
=> x = 1
\(\frac{m+11}{m-x}=\frac{1}{2}\)
ĐKXĐ:m khác x khác 0
=>2m+22=m-x
<=>2m-m+22=-x
<=>-x=m+22
<=>x=-m-22
Vậy x=-m-22 với x khác m khác 0
ĐKXĐ: m, x khác 0
\(\frac{m+11}{m-x}=\frac{1}{2}\)
\(\Leftrightarrow\frac{m+11}{m-x}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{2\left(m+11\right)-\left(m-x\right)}{2\left(m-x\right)}=0\)
\(\Rightarrow2m+22-m+x=0\)
\(\Leftrightarrow m+x=0-22\)
\(\Leftrightarrow x=-m-22\)
\(\frac{x-3}{11}+\frac{x+1}{3}=\frac{x+7}{9}-1\)
\(\Leftrightarrow\frac{9\left(x-3\right)}{99}+\frac{33\left(x+1\right)}{99}=\frac{11\left(x+7\right)}{99}-\frac{99}{99}\)
\(\Leftrightarrow\frac{9\left(x-3\right)+33\left(x+1\right)}{99}=\frac{11\left(x+7\right)-99}{99}\)
\(\Leftrightarrow9\left(x-3\right)+33\left(x+1\right)=11\left(x+7\right)-99\)
\(\Leftrightarrow9x-27+33x+33=11x+77-99\)
\(\Leftrightarrow42x+6=11x-22\Leftrightarrow42x-11x=-6-22\)
\(\Leftrightarrow31x=-28\Leftrightarrow x=-\frac{28}{31}\)
Vậy phương trình có tập nghiệm S={-28/31}