K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 10 2019

a/ \(sinx=-\frac{\sqrt{3}}{2}=sin\left(-\frac{\pi}{3}\right)\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{3}+k2\pi\\x=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\)

b/ \(cosx=\frac{\sqrt{3}}{2}=cos\left(\frac{\pi}{6}\right)\Rightarrow x=\pm\frac{\pi}{6}+k2\pi\)

c/ \(cosx=\frac{\sqrt{2}}{2}=cos\left(\frac{\pi}{4}\right)\Rightarrow x=\pm\frac{\pi}{4}+k2\pi\)

d/ \(tanx=-\sqrt{3}=tan\left(-\frac{\pi}{3}\right)\Rightarrow x=-\frac{\pi}{3}+k\pi\)

AH
Akai Haruma
Giáo viên
24 tháng 7 2020

Lê Huy Hoàng:

a) ĐK: $x\in\mathbb{R}\setminus \left\{k\pi\right\}$ với $k$ nguyên

PT $\Leftrightarrow \tan ^2x-4\tan x+5=0$

$\Leftrightarrow (\tan x-2)^2+1=0$

$\Leftrightarrow (\tan x-2)^2=-1< 0$ (vô lý)

Do đó pt vô nghiệm.

AH
Akai Haruma
Giáo viên
24 tháng 7 2020

c)

ĐK:.............

PT $\Leftrightarrow 1+\frac{\sin ^2x}{\cos ^2x}-1+\tan x-\sqrt{3}(\tan x+1)=0$

$\Leftrightarrow \tan ^2x+\tan x-\sqrt{3}(\tan x+1)=0$

$\Leftrightarrow \tan ^2x+(1-\sqrt{3})\tan x-\sqrt{3}=0$

$\Rightarrow \tan x=\sqrt{3}$ hoặc $\tan x=-1$

$\Rightarrow x=\pi (k-\frac{1}{4})$ hoặc $x=\pi (k+\frac{1}{3})$ với $k$ nguyên

d)

ĐK:.......

PT $\Leftrightarrow \tan x-\frac{2}{\tan x}+1=0$

$\Leftrightarrow \tan ^2x+\tan x-2=0$

$\Leftrightarrow (\tan x-1)(\tan x+2)=0$

$\Rightarrow \tan x=1$ hoặc $\tan x=-2$

$\Rightarrow x=k\pi +\frac{\pi}{4}$ hoặc $x=k\pi +\tan ^{-2}(-2)$ với $k$ nguyên.

30 tháng 7 2019
https://i.imgur.com/yGoNO1U.jpg
NV
19 tháng 7 2020

c/

\(\Leftrightarrow\sqrt{3}tan\left(\frac{\pi}{9}-2x\right)=-3\)

\(\Leftrightarrow tan\left(\frac{\pi}{9}-2x\right)=-\sqrt{3}\)

\(\Rightarrow\frac{\pi}{9}-2x=-\frac{\pi}{3}+k\pi\)

\(\Rightarrow x=\frac{2\pi}{9}+\frac{k\pi}{2}\)

d/

\(\Leftrightarrow\left[{}\begin{matrix}tanx=5\\tan2x=tan4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(5\right)+k\pi\\2x=4+k\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(5\right)+k\pi\\x=2+\frac{k\pi}{2}\end{matrix}\right.\)

NV
19 tháng 7 2020

a/

ĐKXĐ: ...

\(\Leftrightarrow tanx-8\sqrt{3}=3tanx-6\sqrt{3}\)

\(\Leftrightarrow2tanx=-2\sqrt{3}\)

\(\Rightarrow tanx=-\sqrt{3}\Rightarrow x=-\frac{\pi}{3}+k\pi\)

b/

\(\Leftrightarrow tan2x=-cot\left(\frac{5\pi}{8}\right)\)

\(\Leftrightarrow tan2x=tan\left(\frac{\pi}{2}+\frac{5\pi}{8}\right)\)

\(\Leftrightarrow tan2x=tan\left(\frac{9\pi}{8}\right)\)

\(\Rightarrow2x=\frac{9\pi}{8}+k\pi\Rightarrow x=\frac{9\pi}{16}+\frac{k\pi}{2}\)

12 tháng 10 2020

@Nguyễn Việt Lâm giúp em với ạ

13 tháng 10 2020

@Nguyễn Việt Lâm

NV
19 tháng 8 2020

3.

ĐKXĐ; ..

\(\sqrt{3}tanx+\frac{1}{tanx}-\sqrt{3}-1=0\)

\(\Leftrightarrow\sqrt{3}tan^2x-\left(\sqrt{3}+1\right)tanx+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=\frac{1}{\sqrt{3}}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)

4.

\(\Leftrightarrow2cos^2x-1-3cosx=2+2cosx\)

\(\Leftrightarrow2cos^2x-5cosx-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-\frac{1}{2}\\cosx=3>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=\pm\frac{2\pi}{3}+k2\pi\)

NV
19 tháng 8 2020

1.

\(\Leftrightarrow3\left(2cos^22x-1\right)-\left(1-cos^22x\right)+cos2x-2=0\)

\(\Leftrightarrow7cos^22x+cos2x-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=\frac{6}{7}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\pm\frac{1}{2}arccos\left(\frac{6}{7}\right)+k\pi\end{matrix}\right.\)

2.

ĐKXĐ: ...

\(\Leftrightarrow1+cot^2x+3cotx+1=0\)

\(\Leftrightarrow cot^2x+3cotx+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cotx=-1\\cotx=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=arccot\left(-2\right)+k\pi\end{matrix}\right.\)

NV
15 tháng 10 2020

1.

\(\Leftrightarrow sin^2x\left(sinx+1\right)-2\left(1-cosx\right)=0\)

\(\Leftrightarrow\left(1-cos^2x\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)

\(\Leftrightarrow\left(1-cosx\right)\left(1+cosx\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)

\(\Leftrightarrow\left(1-cosx\right)\left(sinx+cosx+sinx.cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\Leftrightarrow...\\sinx+cosx+sinx.cosx-1=0\left(1\right)\end{matrix}\right.\)

Xét (1):

Đặt \(sinx+cosx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)

\(\Leftrightarrow t+\frac{t^2-1}{2}-1=0\)

\(\Leftrightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow...\)

NV
15 tháng 10 2020

2.

\(\Leftrightarrow\sqrt{3}sinx.cosx+\sqrt{2}cos^2x+\sqrt{6}cosx=0\)

\(\Leftrightarrow cosx\left(\sqrt{3}sinx+\sqrt{2}cosx+\sqrt{6}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\Leftrightarrow...\\\sqrt{3}sinx+\sqrt{2}cosx=-\sqrt{6}\left(1\right)\end{matrix}\right.\)

Xét (1):

Do \(\sqrt{3}^2+\sqrt{2}^2< \left(-\sqrt{6}\right)^2\) nên (1) vô nghiệm