Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x-241}{17}+\dfrac{x-220}{19}+\dfrac{x-195}{21}+\dfrac{x-166}{23}=10\)
\(\Leftrightarrow\dfrac{x-241}{17}+\dfrac{x-220}{19}+\dfrac{x-195}{21}+\dfrac{x-166}{23}-10=0\)
\(\Leftrightarrow(\dfrac{x-241}{17}-1)+(\dfrac{x-220}{19}-2)+(\dfrac{x-195}{21}-3)+(\dfrac{x-166}{23}-4)=0\)
\(\Leftrightarrow\dfrac{x-258}{17}+\dfrac{x-258}{19}+\dfrac{x-258}{21}+\dfrac{x-258}{23}=0\)
\(\Leftrightarrow\left(x-258\right)\left(\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{21}+\dfrac{1}{23}\right)=0\)
\(Do\) \(\left(\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{21}+\dfrac{1}{23}\right)\ne0\) \(nên\) \(để\) \(gt=0\)
\(\Leftrightarrow x-258=0\)
\(\Leftrightarrow x=258\)
\(Vậy...\)
d: ĐKXĐ: x<>-4; x<>-5; x<>-6; x<>-7
\(PT\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
=>\(\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
=>\(\dfrac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
=>x^2+11x+28=54
=>x^2+11x-26=0
=>(x+13)(x-2)=0
=>x=2 hoặc x=-13
e: \(\dfrac{x-241}{17}+\dfrac{x-220}{19}+\dfrac{x-195}{21}+\dfrac{x-166}{23}=10\)
\(\Leftrightarrow\left(\dfrac{x-241}{17}-1\right)+\left(\dfrac{x-220}{19}-2\right)+\left(\dfrac{x-195}{21}-3\right)+\left(\dfrac{x-166}{23}-4\right)=0\)
=>x-258=0
=>x=258
\(\frac{x-241}{17}+\frac{x-220}{19}+\frac{x-195}{21}+\frac{x-163}{23}=10\)
\(\Leftrightarrow\frac{x-241}{17}-1+\frac{x-220}{19}-2+\frac{x-195}{21}-3+\frac{x-166}{23}-4=0\)
\(\Leftrightarrow\frac{x-258}{17}+\frac{x-258}{19}+\frac{x-258}{21}+\frac{x-258}{23}=0\)
\(\Leftrightarrow\left(x-258\right)\left(\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\frac{1}{23}\right)=0\)
\(\Leftrightarrow x=258\)
Vậy \(x=258\)
Chúc bạn học tốt !!!
\(\Leftrightarrow\frac{x-241}{17}-1+\frac{x-220}{19}-2+\frac{x-195}{21}-3+\frac{x-166}{23}-4=0\)
\(\Leftrightarrow\frac{x-258}{17}+\frac{x-258}{19}+\frac{x-258}{21}+\frac{x-258}{23}=0\)
\(\Leftrightarrow\left(x-258\right).\left(\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\frac{1}{23}\right)=0\)
\(\Leftrightarrow x-258=0\)
\(\Leftrightarrow x=258\)
\(\Leftrightarrow\frac{x-241}{17}-1+\frac{x-220}{19}-2+\frac{x-195}{21}-3+\frac{x-166}{23}-4=0\)
\(\Leftrightarrow\frac{x-258}{17}+\frac{x-258}{19}+\frac{x-258}{21}+\frac{x-258}{23}=0\)
\(\Leftrightarrow\left(x-258\right)\left(\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\frac{1}{23}\right)=0\)
\(\text{Mà }\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\frac{1}{23}\ne0\text{ nên }x-258=0\Leftrightarrow x=258\)
\(\frac{x-241}{17}+\frac{x-220}{19}+\frac{x-195}{21}+\frac{x-166}{23}=10\)
\(\Leftrightarrow\frac{x-241}{17}+\frac{x-220}{19}+\frac{x-195}{21}+\frac{x-166}{23}=10-1-2-3-4\)
\(\Leftrightarrow\left(\frac{x-241}{17}-1\right)+\left(\frac{x-220}{19}-2\right)+\left(\frac{x-195}{21}-3\right)+\left(\frac{x-166}{23}-4\right)=10-1-2-3-4\)
\(\Leftrightarrow\frac{x-258}{17}+\frac{x-258}{19}+\frac{x-258}{20}+\frac{x-258}{21}=0\)
\(\Leftrightarrow\left(x-258\right)\left(\frac{1}{17}+\frac{1}{19}+\frac{1}{20}+\frac{1}{21}\right)=0\)
\(\Leftrightarrow x-258=0\).Do \(\frac{1}{17}+\frac{1}{19}+\frac{1}{20}+\frac{1}{21}\ne0\)
\(\Leftrightarrow x=258\)
\(\frac{x-241}{17}+\frac{x-220}{19}+\frac{x-195}{21}+\frac{x-166}{23}=10\)
\(\Leftrightarrow\) \(\frac{x-241}{17}+\frac{x-220}{19}+\frac{x-195}{21}+\frac{x-166}{23}-10=0\)
\(\Leftrightarrow\) \(\left(\frac{x-241}{17}-1\right)+\left(\frac{x-220}{19}-2\right)+\left(\frac{x-195}{21}-3\right)+\left(\frac{x-166}{23}-4\right)=0\)
\(\Leftrightarrow\) \(\frac{x-258}{17}+\frac{x-258}{19}+\frac{x-258}{21}+\frac{x-166}{23}=0\)
\(\Leftrightarrow\) \(\left(x-258\right)\left(\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\frac{1}{21}\right)=0\)
\(\Leftrightarrow\) \(x-258=0\) \(\Leftrightarrow\) \(x=258\)
\(\frac{x-241}{17}+\frac{x-220}{19}+\frac{x-195}{21}+\frac{x-166}{23}=0\)
\(\Leftrightarrow\frac{x-258}{17}+\frac{x-258}{19}+\frac{x-258}{21}+\frac{x-258}{23}=-10\)
\(\Leftrightarrow\left(x-258\right)\left(\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\frac{1}{23}\right)=-10\)
\(.....................\)
đến đây thì dễ rồi :)
\(2x^4+3x^3+8x^2+6x+5=0\)
\(\Leftrightarrow2x^4+2x^3+2x^2+x^3+x^2+x+5x^2+5x+5=0\)
\(\Leftrightarrow2x^2\left(x^2+x+1\right)+x\left(x^2+x+1\right)+5\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(2x^2+x+5\right)=0\)
Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
\(2x^2+x+5=2\left[\left(x+\frac{1}{4}\right)^2+\frac{39}{16}\right]>0\forall x\)
Vậy tập nghiệm của pt là \(S=\varnothing\)
b, \(\frac{x-342}{15}+\frac{x-323}{17}+\frac{x-300}{19}+\frac{x-273}{21}=10\)
\(\Leftrightarrow\left(\frac{x-342}{15}-1\right)+\left(\frac{x-323}{17}-2\right)+\left(\frac{x-300}{19}-3\right)+\left(\frac{x-273}{21}-4\right)=0\)
\(\Leftrightarrow\frac{x-357}{15}+\frac{x-357}{17}+\frac{x-357}{19}+\frac{x-357}{21}=0\)
\(\Leftrightarrow\left(x-357\right)\left(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\right)=0\)
\(\Leftrightarrow x-357=0\Leftrightarrow x=357\)
Vậy tập nghiệm của pt: \(S=\left\{357\right\}\)
\(\dfrac{x-241}{17}+\dfrac{x-220}{19}+\dfrac{x-195}{21}+\dfrac{x-166}{23}=10\)
<=>\(\dfrac{x-241}{17}-1+\dfrac{x-220}{19}-2+\dfrac{x-195}{21}-3+\dfrac{x-166}{23}-4=0\)
<=>\(\dfrac{x-258}{17}+\dfrac{x-258}{19}+\dfrac{x-258}{21}+\dfrac{x-258}{23}=0\)
<=>\(\left(x-258\right)\left(\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{21}+\dfrac{1}{23}\right)=0\)
vì 1/17+1/19+1/21+1/23 khác 0
=>x-258=0<=>x=258
vậy..........
Nhập phép tính vào máy tính
Sau đó bấm shift - solve sexra kết quả 258