K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2019

Điều kiện tự xử nhé!

\(6x^2+10x-92+\sqrt{\left(x+70\right)\left(2x^2+4x+16\right)}=0\)(*)

Đặt \(a=\sqrt{x+70};\sqrt{2x^2+4x+16}=b\), (*) trở thành:

\(6x^2+10x-92+ab=0\)

\(\Leftrightarrow6x^2+12x+48-2x-140+ab=0\)

\(\Leftrightarrow3b^2-2a^2+ab=0\)

\(\Leftrightarrow3b^2+3ab-2ab-2a^2=0\)

\(\Leftrightarrow3b\left(a+b\right)-2a\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(3b-2a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\3b=2a\end{matrix}\right.\)

Tới đây dễ rồi UwU

NV
7 tháng 3 2019

Chú ý rằng \(3\left(2x^2+4x+16\right)-2\left(x+70\right)=6x^2+10x-92\)

ĐKXĐ: \(x\ge-70\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+70}=a\ge0\\\sqrt{2x^2+4x+16}=b>0\end{matrix}\right.\) \(\Rightarrow a+b>0\)

\(\Rightarrow6x^2+10x-92=3a^2-2b^2\)

Pt trở thành: \(3a^2+ab-2b^2=0\Leftrightarrow\left(3a-2b\right)\left(a+b\right)=0\)

\(\Leftrightarrow3a-2b=0\Rightarrow3a=2b\)

\(\Rightarrow3\sqrt{x+70}=2\sqrt{2x^2+4x+16}\Leftrightarrow9\left(x+70\right)=4\left(2x^2+4x+16\right)\)

\(\Leftrightarrow8x^2+7x-566=0\Rightarrow\left[{}\begin{matrix}x=...\\x=...\end{matrix}\right.\)

14 tháng 3 2018

Đk : x >= -70

Đặt : \(\sqrt{x+70}=a\);  \(\sqrt{2x^2+4x+16}=b\)

=> 6x^2+10x-92 = 3b^2 - 2a^2

pt trở thành :

3b^2 - 2a^2 + ab = 0

<=> (3b^2+3ab)-(2ab+2a^2) = 0

<=> (a+b).(3b-2a) = 0

<=> a+b=0 hoặc 3b-2a = 0

<=> a=-b hoặc 2a=3b

Đến đó bạn tự thay vào mà làm nha

Tk mk nha

NV
26 tháng 11 2021

ĐKXĐ:...

a. Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+4x+16}=a>0\\\sqrt{x+70}=b\ge0\end{matrix}\right.\)

\(\Rightarrow6x^2+10x-92=3a^2-2b^2\)

Pt trở thành:

\(3a^2-2b^2+ab=0\)

\(\Leftrightarrow\left(a+b\right)\left(3a-2b\right)=0\)

\(\Leftrightarrow3a=2b\)

\(\Leftrightarrow9\left(2x^2+4x+16\right)=4\left(x+70\right)\)

\(\Leftrightarrow...\)

 

NV
26 tháng 11 2021

b. ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\)

Phương trình trở thành:

\(a^2+2+ab=3a+b\)

\(\Leftrightarrow a^2-3a+2+ab-b=0\)

\(\Leftrightarrow\left(a-1\right)\left(a-2\right)+b\left(a-1\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(a+b-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+b=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}+\sqrt{1-x}=2\end{matrix}\right.\)

\(\Leftrightarrow...\)

30 tháng 6 2017

a)Đk:\(x\ge\frac{1}{2}\)

\(pt\Leftrightarrow4x^2-12x+4+4\sqrt{2x-1}=0\)

\(\Leftrightarrow\left(2x-1\right)^2-4\left(2x-1\right)-1+4\sqrt{2x-1}=0\)

Đặt \(t=\sqrt{2x-1}>0\Rightarrow\hept{\begin{cases}t^2=2x-1\\t^4=\left(2x-1\right)^2\end{cases}}\)

\(t^4-4t^2+4t-1=0\)

\(\Leftrightarrow\left(t-1\right)^2\left(t^2+2t-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}t-1=0\\t^2+2t-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}t=1\\t=\sqrt{2}-1\end{cases}\left(t>0\right)}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=2-\sqrt{2}\end{cases}}\) là nghiệm thỏa pt

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

17 tháng 5 2019

\(ĐK:x\le\frac{5-\sqrt{7}}{6},\frac{5+\sqrt{7}}{6}\le x\)

Ta có: \(8x^4+2=36x^4+9+100x^2+36x^2-60x-120x^3\)

    <=> \(28x^4-120x^3+136x^2-60x+7=0\)

    <=> \(\left(2x^2-6x+1\right)\left(14x^2-18x+7\right)=0\)

    <=> \(\orbr{\begin{cases}2x^2-6x+1=0\\14x^2-18x+7=0\end{cases}}\)

    \(TH_1:2x^2-6x+1=0\)

       <=> \(\orbr{\begin{cases}x=\frac{3+\sqrt{7}}{2}\left(n\right)\\x=\frac{3-\sqrt{7}}{2}\left(n\right)\end{cases}}\)

    \(TH_2:14x^2-18x+7=0\)

       <=> \(x\in\Phi\)( Tự c/m)

               Vậy \(S=\left\{\frac{3\pm\sqrt{7}}{2}\right\}\)

21 tháng 2 2019

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

21 tháng 2 2019

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)

20 tháng 2 2020

\(pt\Leftrightarrow3x\left(2+\sqrt{\left(3x\right)^2+3}\right)=-\left(2x+1\right)\)\(\left(2+\sqrt{\left(2x+1\right)^2+3}\right)\)

Nếu 3x = - (2x + 1)\(\Leftrightarrow x=-\frac{1}{5}\)thì các biểu thức trong căn của hai vế bằng nhau.Vậy \(x=-\frac{1}{5}\)là 1 nghiệm của phương trình.

Hơn nữa, nghiệm của pt nằm trong khoảng \(\left(\frac{-1}{2};0\right)\).Ta chứng minh đó là nghiệm duy nhất.

Với \(-\frac{1}{2}< x< -\frac{1}{5}:3x< -2x-1< 0\)

\(\Rightarrow\left(3x\right)^2>\left(2x+1\right)^2\)\(\Rightarrow2+\sqrt{\left(3x\right)^2+3}>2+\sqrt{\left(2x+1\right)^2+3}\)

Suy ra \(3x\left(2+\sqrt{\left(3x\right)^2+3}\right)+\left(2x+1\right)\)\(\left(2+\sqrt{\left(2x+1\right)^2+3}\right)>0\)pt không có nghiệm nằm trong khoảng này.CMTT: ta cũng đi đến kết luận pt không có nghiệm khi \(-\frac{1}{2}< x< -\frac{1}{5}\)

Vậy nghiệm duy nhất của phương trình là \(\frac{-1}{5}\)

11 tháng 5 2020

PT tương đương 

\(\left(2x+1\right)\left(2+\sqrt{\left(2x+1\right)^2+3}\right)=-3x\left(2+\sqrt{\left(-3x\right)^2+3}\right)\)

\(\Leftrightarrow f\left(2x+1\right)=f\left(-3x\right)\)

Trong đó \(f\left(t\right)=t\left(2+\sqrt{t^2+3}\right)\)là hàm đồng biến và liên tục trong R. Phương trình trở thành

\(f\left(2x+1\right)=f\left(-3x\right)\Leftrightarrow2x+1=-3x\Leftrightarrow x=\frac{-1}{5}\)là nghiệm duy nhất