K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2016

Ta có: \(4x^2-21x+23+2\sqrt{x+1}=0\)

\(\Rightarrow-\left(x+1\right)+2\sqrt{x+1}+4x^2-20x+24=0\)

Đặt a = \(\sqrt{x+1}\left(a\ge0\right)\) , ta được pt:    -a2 + 2a + 4x2 - 20x + 24 = 0

Có: \(\Delta'=1+4x^2-20x+24=4x^2-20x+25=\left(2x-5\right)^2\Rightarrow\sqrt{\Delta}=2x-5\)

 \(\Rightarrow\orbr{\begin{cases}a=6-2x\\a=2x-4\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x+1}=6-2x\\\sqrt{x+1}=2x-4\end{cases}}\Rightarrow\orbr{\begin{cases}x+1=\left(6-2x\right)^2\\x+1=\left(2x-4\right)^2\end{cases}}}\)

Tới đây bạn tự giải

11 tháng 2 2020

\(4x^2-21x+23+2\sqrt{x+1}=0\) (x\(\ge-1\))

\(\Leftrightarrow\left(4x^2-20x+25\right)-\left(x+1+2\sqrt{x+1}+1\right)\)=0

\(\Leftrightarrow\left(2x-5\right)^2=\left(\sqrt{x+1}+1\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=\sqrt{x+1}+1\\2x-5=-\sqrt{x+1}-1\end{matrix}\right.\) ....

11 tháng 2 2020

Ta có: \(4x^2-21x+23+2\sqrt{x+1}=0\left(Đkxđ:x\ge-1\right)\)

\(\Leftrightarrow4x^2-21x+23=-2\sqrt{x+1}\)

\(\Leftrightarrow16x^4+441x^2+529-168x^3+184x^2-966x=4\left(x+1\right)\)

\(\Leftrightarrow16x^4-168x^3+625x^2-970x+525=0\)

\(\Leftrightarrow\left(16x^3-120x^2+265x-175\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-\frac{5}{4}\right)\left(16x^2-100x+140\right)=0\)

.............................................................

25 tháng 7 2018

Đặt \(\sqrt[3]{x}=a\). Ta có:

4a\(^2\)+21a+27=0giải  phương trình bậc hai

29 tháng 7 2021

1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)

Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)

2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)

\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)

Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)

\(\Rightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy pt có no x=2

27 tháng 7 2015

3. ĐK: \(x^2-2x-1\ge0\Leftrightarrow x\le1-\sqrt{2}\text{ hoặc }x\ge1+\sqrt{2}\)

\(pt\Leftrightarrow\sqrt[3]{x^3-14}-\left(x-2\right)+2\sqrt{x^2-2x-1}=0\)

Ta sẽ chứng minh phương trình này có \(VT\ge VP\)

\(VT\ge\frac{x^3-14-\left(x-2\right)^3}{A^2+AB+B^2}+0\text{ }\left(A=\sqrt[3]{x^3-14};\text{ }B=x-2\right)\)

\(=\frac{6\left(x^2-2x-1\right)}{\left(A+\frac{B}{2}\right)^2+\frac{3B^2}{4}}\ge0=VP\text{ }\left(do\text{ }x^2-2x-1\ge0\right)\)

Dấu "=" xảy ra khi \(x^2-2x-1=0\Leftrightarrow x=1+\sqrt{2}\text{ hoặc }x=1-\sqrt{2}\)

\(\text{Kết luận: }x\in\left\{1+\sqrt{2};\text{ }1-\sqrt{2}\right\}\)

17 tháng 11 2016

e/ \(\sqrt{x-2}+\sqrt{6-x}=\sqrt{x^2-8x+24}\)

\(\Leftrightarrow4+2\sqrt{\left(x-2\right)\left(6-x\right)}=x^2-8x+24\)

\(\Leftrightarrow2\sqrt{-x^2+8x-12}=x^2-8x+20\)

Đặt \(\sqrt{-x^2+8x-12}=a\left(a\ge0\right)\)thì pt thành

\(2a=-a^2+8\)

\(\Leftrightarrow a^2+2a-8=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-4\left(l\right)\\a=2\end{cases}}\)

\(\Leftrightarrow\sqrt{-x^2+8x-12}=2\)

\(\Leftrightarrow-x^2+8x-12=4\)

\(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x=4\)

17 tháng 11 2016

a/ \(4x^2+3x+3-4x\sqrt{x+3}-2\sqrt{2x-1}=0\)

\(\Leftrightarrow\left(4x^2-4x\sqrt{x+3}+x+3\right)+\left(2x-1-2\sqrt{2x-1}+1\right)=0\)

\(\Leftrightarrow\left(2x-\sqrt{x+3}\right)^2+\left(1-\sqrt{2x-1}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}2x=\sqrt{x+3}\\1=\sqrt{2x-1}\end{cases}\Leftrightarrow}x=1\)