K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

ĐKXĐ : \(x\ne2,x\ne4\)

Phương trình ban đầu tương đương :

\(\frac{x-1}{x-2}+\frac{x+3}{x-4}+\frac{2}{x^2-6x+8}=0\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x-4\right)+\left(x+3\right)\left(x-2\right)+2}{\left(x-2\right)\left(x-4\right)}=0\)

\(\Rightarrow x^2-5x+4+x^2+x-6+2=0\)

\(\Leftrightarrow2x^2-4x=0\)

\(\Leftrightarrow2x\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)

\(\Rightarrow x=0\) ( Do x = 2 không thỏa mãn ĐKXĐ )

Vậy pt đã cho có tập nghiệm \(S=\left\{0\right\}\)

28 tháng 2 2020

\(ĐKXĐ:x\ne2;x\ne4\)

\(\frac{x-1}{x-2}+\frac{x+3}{x-4}=\frac{2}{-x^2+6x-8}\)

\(\Rightarrow\frac{\left(x-1\right)\left(x-4\right)+\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x-4\right)}=\frac{-2}{x^2-6x+8}\)

\(\Rightarrow\frac{\left(x^2-5x+4\right)+\left(x^2+x-6\right)}{x^2-6x+8}=\frac{-2}{x^2-6x+8}\)

\(\Rightarrow\frac{2x^2-4x-2}{x^2-6x+8}=\frac{-2}{x^2-6x+8}\)

\(\Rightarrow2x^2-4x-2=-2\)

\(\Rightarrow2x^2-4x=0\Rightarrow2x\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=2\left(ktm\right)\end{cases}}\)

Vậy pt có 1 nghiệm duy nhất là 0

25 tháng 6 2019

ĐKXĐ: \(x\ne\pm2\)

\(\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)

\(\Leftrightarrow\frac{\left(1-6x\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(9x+4\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{x\left(3x-2\right)+1}{\left(x+2\right)\left(x-2\right)}\)

\(\Leftrightarrow x+2-6x^2-12x+9x^2-18x+4x-8=3x^2-2x+1\)

\(\Leftrightarrow-23x=7\)

\(\Leftrightarrow x=\frac{-7}{23}\left(tm\right)\)

Vậy: \(S=\left\{-\frac{7}{23}\right\}\)

=.= hk tốt!!

25 tháng 6 2019

Giải :

\(\text{ĐKXĐ}\: :\: x\ne\pm2\)

\(\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)

 \(\Leftrightarrow\frac{\left(1-6x\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)}{x^2-4}=\frac{x\left(3x-2\right)+1}{x^2-4}\)

Khử mẫu : \(\left(-6x^2-12x+x+2\right)+\left(9x^2-18x+4x-8\right)=3x^2-2x+1\)

           \(\Leftrightarrow-23x=7\Leftrightarrow x=\frac{7}{23}\).

25 tháng 2 2020

ĐKXĐ : \(x\ne2,x\ne4\)

Pt \(\Leftrightarrow\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-12\left(\frac{x-2}{x-4}\right)^2=0\) (2)

Đặt  \(\frac{x+1}{x-2}=a,\frac{x-2}{x-4}=b\Rightarrow ab=\frac{x+1}{x-4}\)

Khi đó pt (2) trở thành :

\(a^2+ab-12b=0\)

\(\Leftrightarrow a^2-3ab+4ab-12b=0\)

\(\Leftrightarrow a\left(a-3b\right)+4b\left(a-3b\right)=0\)

\(\Leftrightarrow\left(a-3b\right)\left(a+4b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=3b\\a=-4b\end{cases}}\)

Bạn thay vào tính, được nghiệm là \(S=\left\{3,\frac{4}{3}\right\}\)

\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)

\(\left(10x+3\right):8=\left(7-8x\right):12\)

\(\left(10x+3\right).\frac{1}{8}=\left(7-8x\right).\frac{1}{12}\)

\(\frac{5}{4}x+\frac{3}{8}=\frac{7}{12}-\frac{8}{12}x\)

\(\frac{5}{4}x+\frac{8}{12}x=\frac{7}{12}-\frac{3}{8}\)

\(\frac{23}{12}x=\frac{5}{24}\)

\(x=\frac{5}{46}\)

6 tháng 3 2020

E mới lớp 6 nên giải sai thì thông cảm ạ UwU

\(b,\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)

\(< =>\frac{9x}{90}-\frac{7x}{90}=\frac{4}{5}\)

\(< =>\frac{x}{45}=\frac{32}{45}\)

\(< =>x=32\)

\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)

\(< =>\left(10x+3\right).12=\left(7-8x\right).8\)

\(< =>120x+36=56-64x\)

\(< =>184x=56-36=20\)

\(< =>x=\frac{20}{184}=\frac{5}{46}\)

27 tháng 3 2020

\(ĐKXĐ:x\ne2;x\ne4\)

\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=-1\)

\(\Leftrightarrow\frac{\left(x-3\right)\left(x-4\right)+\left(x-2\right)^2}{\left(x-2\right)\left(x-4\right)}=-1\)

\(\Leftrightarrow\frac{x^2-7x+12+x^2-4x+4}{x^2-6x+8}=-1\)

\(\Leftrightarrow2x^2-11x+16=-x^2+6x-8\)

\(\Leftrightarrow3x^2-17x+24=0\)

\(\Leftrightarrow\left(x-3\right)\left(3x-8\right)=0\)

\(\Leftrightarrow x=3;x=\frac{8}{3}\)

Vậy tập nghiệm của phương trình  là \(S=\left\{3;\frac{8}{3}\right\}\)

24 tháng 5 2021

Câu 1a : tự kết luận nhé 

\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)

Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)

\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)

c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)

\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0 

24 tháng 5 2021

1) 2(x + 3) = 5x - 4

<=> 2x + 6 = 5x - 4

<=> 3x = 10

<=> x = 10/3

Vậy x = 10/3 là nghiệm phương trình 

b) ĐKXĐ : \(x\ne\pm3\)

\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)

=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)

=> x + 3 - 2(x - 3) = 5 - 2x

<=> -x + 9 = 5 - 2x

<=> x = -4 (tm) 

Vậy x = -4 là nghiệm phương trình 

c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)

<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)

<=> 3(x + 1) \(\ge\)2(2x - 2)

<=> 3x + 3 \(\ge\)4x - 4

<=> 7 \(\ge\)x

<=> x \(\le7\)

Vậy x \(\le\)7 là nghiệm của bất phương trình 

Biểu diễn

-----------------------|-----------]|-/-/-/-/-/-/>

                           0             7

3 tháng 3 2020

\(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)

\(\Leftrightarrow\frac{x+1}{9}+1+\frac{x+2}{8}+1=\frac{x+3}{7}+1+\frac{x+4}{6}+1\)

\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{8}=\frac{x+10}{7}+\frac{x+10}{6}\)

\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)

\(\Leftrightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)

Mà \(\frac{1}{9}< \frac{1}{8}< \frac{1}{7}< \frac{1}{6}\)nên \(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}< 0\)

Suy ra x + 10 = 0

Vậy x = -10

3 tháng 3 2020

Pt ban đầu tương đương :

\(\left(\frac{x+1}{9}+1\right)+\left(\frac{x+2}{8}+1\right)=\left(\frac{x+3}{7}+1\right)+\left(\frac{x+4}{6}+1\right)\)

\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{8}=\frac{x+10}{7}+\frac{x+10}{6}\)

\(\Leftrightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)

Mà : \(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\ne0\)

\(\Rightarrow x+10=0\)

\(\Leftrightarrow x=-10\) ( thỏa mãn )

Vậy pt đã cho có tập nghiệm \(S=\left\{-10\right\}\)