Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Leftrightarrow\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}+3=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}+3\)
\(\Leftrightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)\)
\(+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)(1)
Vì \(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\ne0\)(2)
Từ (1) và (2) \(\Rightarrow x+2009=0\)\(\Rightarrow x=-2009\)
Vậy \(x=-2009\)
câu 2 :
\(\Leftrightarrow\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}-\frac{x+4}{2005}-\frac{x+5}{2004}-\frac{x+6}{2003}\)=0
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x-2009}{2003}\)=0
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\)
\(\Rightarrow x+2009=0\)
\(\Rightarrow x=-2009\)
\(b,\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Rightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
\(\Rightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Rightarrow\left(x+9\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}\right)=\left(x+9\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)\)
\(\Rightarrow\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}=\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\left(KTM\right)\)
\(\text{Giải}\)
\(b,\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)
\(\Leftrightarrow x+2009=0\Leftrightarrow x=-2009\)
Câu 1 :
a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)
\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)
\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)
Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)
tương tự
\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)
\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)
\(< =>95-24x+40=6-4x-15x+5\)
\(< =>-24x+135=-19x+11\)
\(< =>5x=135-11=124\)
\(< =>x=\frac{124}{5}\)
=) vào ngay quả bảng phá dấu GTTĐ, cay thế :<
a, \(3x+\frac{2x}{3}-3=\frac{5}{2}x-2\Leftrightarrow\frac{18x+4x-18}{6}=\frac{15x-12}{6}\)
\(\Rightarrow22x-18=15x-12\Leftrightarrow7x=6\Leftrightarrow x=\frac{6}{7}\)
Vậy pt có nghiệm x = 6/7
b, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}+\frac{x+1}{3}=\frac{x+7}{12}\)
\(\Leftrightarrow\frac{9\left(2x+1\right)-2\left(5x+3\right)+4\left(x+1\right)}{12}=\frac{x+7}{12}\)
\(\Rightarrow18x+9-10x-6+4x+4=x+7\)
\(\Leftrightarrow12x+7=x+7\Leftrightarrow11x=0\Leftrightarrow x=0\)
Vậy pt có nghiệm là x = 0
c, \(\frac{3x}{x-3}-\frac{x-3}{x+3}=2\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow\frac{3x\left(x+3\right)-\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=\frac{2\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow3x^2+9x-x^2+6x-9=2\left(x^2-9\right)\)
\(\Leftrightarrow2x^2+15x-9=2x^2-18\Leftrightarrow15x+9=0\Leftrightarrow x=-\frac{9}{15}=-\frac{3}{5}\)
Vậy pt có nghiệm là x = -3/5
d, Sửa đề : \(\frac{x+10}{2003}+\frac{x+6}{2007}+\frac{x+2}{2011}+3=0\)
\(\Leftrightarrow\frac{x+10}{2003}+1+\frac{x+6}{2007}+1+\frac{x+2}{2011}+1=0\)
\(\Leftrightarrow\frac{x+2013}{2003}+\frac{x+2013}{2007}+\frac{x+2013}{2011}=0\)
\(\Leftrightarrow\left(x+2013\right)\left(\frac{1}{2003}+\frac{1}{2007}+\frac{1}{2011}\ne0\right)=0\Leftrightarrow x=-2013\)
Vậy pt có nghiệm là x = -2013
e, \(4\left(x+5\right)-3\left|2x-1\right|=10\)
\(\Leftrightarrow4x+20-3\left|2x-1\right|=10\Leftrightarrow-3\left|2x-1\right|=-10-4x\)
\(\Leftrightarrow\left|2x-1\right|=\frac{10+4x}{3}\)
ĐK : \(\frac{10+4x}{3}\ge0\Leftrightarrow10+4x\ge0\Leftrightarrow x\ge-\frac{10}{4}=-\frac{5}{2}\)
TH1 : \(2x-1=\frac{10+4x}{3}\Rightarrow6x-3=10+4x\Leftrightarrow2x=13\Leftrightarrow x=\frac{13}{2}\)( tm )
TH2 : \(2x-1=\frac{-10-4x}{3}\Rightarrow6x-3=-10-4x\Leftrightarrow10x=-7\Leftrightarrow x=-\frac{7}{10}\)( tm )
f, để mình xem lại đã, quên cách phá GTTĐ rồi :v :>
a) \(\frac{x+1}{4}-\frac{x+2}{5}+\frac{x+4}{7}-\frac{x+5}{8}+\frac{x+7}{10}-\frac{x+9}{12}=0\)
\(\Leftrightarrow\)\(\frac{x+1}{4}-1-\frac{x+2}{5}+1+\frac{x+4}{7}-1-\frac{x+5}{8}+1+\frac{x+7}{10}-1-\frac{x+9}{12}+1=0\)
\(\Leftrightarrow\)\(\frac{x-3}{4}-\frac{3-x}{5}+\frac{x-3}{7}-\frac{3-x}{8}+\frac{x+3}{10}-\frac{3-x}{12}=0\)
\(\Leftrightarrow\)\(\frac{x-3}{4}+\frac{x-3}{5}+\frac{x-3}{7}+\frac{x-3}{8}+\frac{x-3}{10}+\frac{x-3}{12}=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{7}+\frac{1}{8}+\frac{1}{10}+\frac{1}{12}\right)=0\)
Vì \(\frac{1}{4}+\frac{1}{5}+\frac{1}{7}+\frac{1}{8}+\frac{1}{10}+\frac{1}{12}\ne0\)
\(\Rightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Vậy...
b) \(\frac{x}{2004}+\frac{x+1}{2005}+\frac{x+2}{2006}+\frac{x+3}{2007}=4\)
\(\Leftrightarrow\)\(\frac{x}{2004}-1+\frac{x+1}{2005}-1+\frac{x+2}{2006}-1+\frac{x+3}{2007}-1=0\)
\(\Leftrightarrow\)\(\frac{x-2004}{2004}+\frac{x-2004}{2005}+\frac{x-2004}{2006}+\frac{x-2004}{2007}=0\)
\(\Leftrightarrow\)\(\left(x-2004\right)\left(\frac{1}{2004}+\frac{1}{2005}+\frac{1}{2006}+\frac{1}{2007}\right)=0\)
Vì \(\frac{1}{2004}+\frac{1}{2005}+\frac{1}{2006}+\frac{1}{2007}\ne0\)
\(\Rightarrow\)\(x-2004=0\)
\(\Leftrightarrow\)\(x=2004\)
Vậy...