K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2018

pt <=> x^3-x^2+x+x^2-x+1+x^2+2=x^3+2x

<=> x^3+x^2+3 = x^3+2x

<=> x^3+x^2+3-x^3-2x=0

<=> x^2-2x+3 = 0

<=> (x^2-2x+1)+2=0

<=> (x-1)^2 = -2

=> pt vô nghiệm vì (x-1)^2 >= 0

Tk mk nha

9 tháng 1 2018

Cảm ơn Nguyễn Anh Quân

6 tháng 11 2019

d.Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath

a)(x-3)-x(x-2)=0 

x=\(\frac{9}{4}\)
b)3x(2-x)+4(x-2) =0

x=2
c)(x-1)2=(49-1)16 

x=5308417
d)x3-6x2+9x=0

x=0

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

3 tháng 8 2017

Ta có ; (x - 3)2 - x(x - 2) = 0

<=> x2 - 6x + 9 - x2 + 2x = 0

<=> -4x + 9 = 0 

=> -4x = -9

=> x = \(\frac{9}{4}\)

30 tháng 5 2017

1) ĐK: \(x\ge-1\)

TH1: \(x^2-3x+1=-x-1\)

\(\Leftrightarrow x^2-2x+2=0\Leftrightarrow\left(x-1\right)^2+1=0\) vô lý

TH2: \(x^2-3x+1=x+1\)

\(\Leftrightarrow x^2-4x=0\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

Vậy ...

30 tháng 5 2017

1) \(\left|x^2-3x+1\right|=x+1\)(1)

khi \(x\ge-1\), phương trình (1) có dạng:

\(\orbr{\begin{cases}x^2-3x+1=x+1\\x^2-3x+1=-x-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x^2-4x=0\\x^2-2x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x\left(x-4\right)=0\\\left(x-1\right)^2+1=0\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=0\\x=4\end{cases}}\\\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)(vì \(\left(x-1\right)^2+1>0\)(vô nghiệm) )

vậy tập nghiệm của phương trình là: S={0;4}

15 tháng 3 2018

a. 

\(=\left(x+1\right)\left(x+2\right)\left(x-2\right)\left(x-3\right)\)

b. 

\(=\left(x+1\right)\left(x+1\right)\left(x^2+x+1\right)\)

c. 

22 tháng 1 2020

\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{CM vô số nghiệm}\)
       \(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)

a,\(2x-5=3x+15\)

\(3x-2x=-5-15\)

\(x=-20\)

b,\(\frac{2}{x-1}=\frac{6}{x+1}\)

\(2x+2=6x-6\)

\(4x=8\)

\(x=2\)