\(\dfrac{x-1}{2}\) + \(\dfrac{x+2}{3}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2022

\(\dfrac{x-1}{2}+\dfrac{x+2}{3}=\dfrac{2x-3}{9}\)

\(\Leftrightarrow9\left(x-1\right)+6\left(x+2\right)=2\left(2x-3\right)\)

\(\Leftrightarrow9x-9+6x+12=4x-6\)

\(\Leftrightarrow9x+6x-4x=-12+9-6\)

\(\Leftrightarrow-11x=-3\)

\(\Leftrightarrow x=\dfrac{3}{11}\)

Vậy \(S=\left\{\dfrac{3}{11}\right\}\)

1 tháng 1 2018

\(\dfrac{x-1}{9}+\dfrac{x-2}{8}+\dfrac{x-3}{7}=\dfrac{x-9}{1}+\dfrac{x-8}{2}+\dfrac{x-7}{3}\\ \Leftrightarrow\dfrac{x-1}{9}-1+\dfrac{x-2}{8}-1+\dfrac{x-3}{7}-1=\dfrac{x-9}{1}-1+\dfrac{x-8}{2}-1+\dfrac{x-7}{3}-1\\ \Leftrightarrow\dfrac{x-10}{9}+\dfrac{x-10}{8}+\dfrac{x-10}{7}=\dfrac{x-10}{1}+\dfrac{x-10}{2}+\dfrac{x-10}{3}\\ \Leftrightarrow\left(x-10\right)\left(\dfrac{1}{9}+\dfrac{1}{8}+\dfrac{1}{7}-1-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\Leftrightarrow x-10=0\\ \Leftrightarrow x=10\)

1 tháng 1 2018

Trừ 2 vế với 1:

\(\Rightarrow\dfrac{x-1}{9}+\dfrac{x-2}{8}+\dfrac{x-3}{7}+3=\dfrac{x-9}{1}+\dfrac{x-8}{2}+\dfrac{x-7}{3}+3\)

\(\Rightarrow\left(\dfrac{x-1}{9}-1\right)+\left(\dfrac{x-2}{8}-1\right)+\left(\dfrac{x-3}{7}-1\right)=\left(\dfrac{x-9}{1}-1\right)+\left(\dfrac{x-8}{2}-1\right)+\left(\dfrac{x-7}{3}-1\right)\)

\(\Rightarrow\left(\dfrac{x-1}{9}-\dfrac{9}{9}\right)+\left(\dfrac{x-2}{8}-\dfrac{8}{8}\right)+\left(\dfrac{x-3}{7}-\dfrac{7}{7}\right)=\left(\dfrac{x-9}{1}-\dfrac{1}{1}\right)+\left(\dfrac{x-8}{2}-\dfrac{2}{2}\right)+\left(\dfrac{x-7}{3}-\dfrac{3}{3}\right)\)

\(\Rightarrow\dfrac{x-10}{9}+\dfrac{x-10}{8}+\dfrac{x-3}{7}=\dfrac{x-10}{1}+\dfrac{x-10}{2}+\dfrac{x-10}{3}\)

\(\Rightarrow\dfrac{x-10}{9}+\dfrac{x-10}{8}+\dfrac{x-10}{7}-\dfrac{x-10}{1}-\dfrac{x-10}{2}-\dfrac{x-10}{3}\)

\(\Rightarrow\left(x-10\right)\left(\dfrac{1}{9}+\dfrac{1}{8}+\dfrac{1}{7}-1-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\)

\(\Rightarrow\left(x-10\right)=0\)

\(\Rightarrow x=10\)

24 tháng 3 2017

bạn nên bổ sung chữ "bất"haha

1)

\(x-\dfrac{x-1}{3}+\dfrac{x+2}{6}>\dfrac{2x}{5}+5\\ \Leftrightarrow x-\dfrac{x-1}{3}+\dfrac{x+2}{6}-\dfrac{2x}{5}-5>0\\ \Leftrightarrow\dfrac{30x-10\left(x-1\right)+5\left(x+2\right)-2x\cdot6-5\cdot30}{30}>0\\ \Leftrightarrow30x-10x+10+5x+10-12x-150>0\\ \Leftrightarrow30x-10x=5x-12x>-10-10+150\\ \Leftrightarrow13x>130\\ \Leftrightarrow13x\cdot\dfrac{1}{13}>130\cdot\dfrac{1}{13}\\ \Leftrightarrow x>10\)

Vậy tập ngiệm của bât hương trình là {x/x>10}

mình mới học đến đây nên cách giải còn dài, thông cảm nha

24 tháng 3 2017

2)

\(\dfrac{2x+6}{6}-\dfrac{x-2}{9}< 1\\ \Leftrightarrow\dfrac{2\left(x+3\right)}{6}-\dfrac{x-2}{9}< 1\\ \Leftrightarrow\dfrac{x+3}{3}-\dfrac{x-2}{9}-1< 0\\ \Leftrightarrow\dfrac{3\left(x+3\right)-x+2-9}{9}< 0\\ \Leftrightarrow3x+9-x+2-9< 0\\ \Leftrightarrow3x-x< -9+9-2\\ \Leftrightarrow2x< -2\\ \Leftrightarrow2x\cdot\dfrac{1}{2}< -2\cdot\dfrac{1}{2}\Leftrightarrow x< -1\)

Vậy tập nghiệm của bất phương trình là {x/x<-1}

23 tháng 2 2019

a) Đk : \(x\ne0;\ne1\)

\(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=\dfrac{2\left(x^2+x-1\right)}{x\left(x+1\right)}\)

\(\Rightarrow\dfrac{x^2+3x}{x\left(x+1\right)}+\dfrac{x^2-x-2}{x\left(x+1\right)}-\dfrac{2x^2+2x-2}{x\left(x+1\right)}=0\)

\(\Rightarrow\dfrac{x^2+3x+x^2-x-2-2x^2-2x+2}{x\left(x-1\right)}=0\)

\(\Rightarrow\dfrac{0}{x-1}=0\)

=> Phương trình có vô số nghiệm x

b) Đk : \(x\ne2;x\ne3\)

\(\dfrac{2}{x-2}-\dfrac{x}{x+3}=\dfrac{5x}{\left(x-2\right)\left(x+3\right)}-1\)

\(\Rightarrow\dfrac{2x+6}{\left(x-2\right)\left(x+3\right)}-\dfrac{x^2-2x}{\left(x-2\right)\left(x+3\right)}-\dfrac{5x}{\left(x-2\right)\left(x+3\right)}+\dfrac{x^2+x-6}{\left(x-2\right)\left(x+3\right)}\)

=0

\(\Rightarrow\dfrac{2x+6-x^2+2x-5x+x^2+x+6}{\left(x-2\right)\left(x+3\right)}=0\)

\(\Rightarrow\dfrac{12}{\left(x-2\right)\left(x+3\right)}=0\)

=> Phương trình vô nghiệm

c)

\(\Leftrightarrow\dfrac{x^2-x+1}{x^4+x^2+1}-\dfrac{x^2+x+1}{x^4+x^2+1}-\dfrac{1-2x}{x^4+x^2+1}=0\)

\(\Rightarrow\dfrac{x^2-x+1-x^2-x-1-1+2x}{x^4+x^2+1}=0\)

\(\Rightarrow\dfrac{-1}{x^4+x^2+1}=0\)

=> PTVN

d) Thôi tự làm đi, câu này dễ :Vvv

e)

\(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)\)=40

\(\Rightarrow\left[\left(x+1\right)\left(x+5\right)\right]\cdot\left[\left(x+2\right)\left(x+4\right)\right]=40\)

\(\Rightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=40\)

Đặt

\(x^2+6x+7=t\)

Phương trình tương đương

\(\left(t-1\right)\left(t+1\right)=40\)

\(t^2=41\)

\(\)\(t=\pm\sqrt{41}\)

Thay vào tìm x.

24 tháng 2 2019

Thanks ;)

19 tháng 7 2018

undefined

22 tháng 5 2017

a) \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\)

\(\Leftrightarrow\dfrac{4x+\left(2x-1\right)}{6}=\dfrac{24-2x}{6}\)

\(\Leftrightarrow4x+2x-1=24-2x\)

\(\Leftrightarrow6x+2x=24+1\)

\(\Leftrightarrow8x=25\)

\(\Leftrightarrow x=\dfrac{25}{8}\)

Vậy phương trình có một nghiệm là x = \(\dfrac{25}{8}\)

b) \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\)

\(\Leftrightarrow\dfrac{6\left(x-1\right)+3\left(x-1\right)}{12}=\dfrac{12-8\left(x-1\right)}{12}\)

\(\Leftrightarrow6\left(x-1\right)+3\left(x-1\right)=12-8\left(x-1\right)\)

\(\Leftrightarrow9\left(x-1\right)+8\left(x-1\right)=12\)

\(\Leftrightarrow17\left(x-1\right)=12\)

\(\Leftrightarrow17x-17=12\)

\(17x=12+17\)

\(\Leftrightarrow17x=29\)

\(\Leftrightarrow x=\dfrac{29}{17}\)

Vậy phương trình có một nghiệm là x = \(\dfrac{29}{17}\)

c) \(\dfrac{2-x}{2001}-1=\dfrac{1-x}{2002}-\dfrac{x}{2003}\)

\(\Leftrightarrow\dfrac{2-x}{2001}-\dfrac{1-x}{2002}-\dfrac{\left(-x\right)}{2003}=1\)

\(\Leftrightarrow\dfrac{2-x}{2001}+1-\dfrac{1-x}{2002}-1-\dfrac{\left(-x\right)}{2003}-1=1+1-1-1\)

\(\Leftrightarrow\dfrac{2-x}{2001}+\dfrac{2001}{2001}-\dfrac{1-x}{2002}-\dfrac{2002}{2002}-\dfrac{\left(-x\right)}{2003}-\dfrac{2003}{2003}=0\)

\(\Leftrightarrow\dfrac{2003-x}{2001}-\dfrac{2003-x}{2002}-\dfrac{2003-x}{2003}=0\)

\(\Leftrightarrow\left(2003-x\right)\left(\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Leftrightarrow2003-x=0\)

\(\Leftrightarrow-x=-2003\)

\(\Leftrightarrow x=2003\)

Vậy phương trình có một nghiệm là x = 2003

29 tháng 5 2017

a) \(\dfrac{2x}{3}+\dfrac{2x-1}{6}=4-\dfrac{x}{3}\)

\(\Leftrightarrow\dfrac{4x}{6}+\dfrac{2x-1}{6}=\dfrac{24}{6}-\dfrac{2x}{6}\)

\(\Leftrightarrow4x+2x-1=24-2x\)

\(\Leftrightarrow4x+2x+2x=1+24\)

\(\Leftrightarrow8x=25\)

\(\Leftrightarrow x=\dfrac{25}{8}\)

Vậy S={\(\dfrac{25}{8}\)}

b) \(\dfrac{x-1}{2}+\dfrac{x-1}{4}=1-\dfrac{2\left(x-1\right)}{3}\)

\(\Leftrightarrow\dfrac{6\left(x-1\right)}{12}+\dfrac{3\left(x-1\right)}{12}=\dfrac{12}{12}-\dfrac{8\left(x-1\right)}{12}\)

\(\Leftrightarrow6\left(x-1\right)+3\left(x-1\right)=12-8\left(x-1\right)\)

\(\Leftrightarrow6x-6+3x-3=12-8x+8\)

\(\Leftrightarrow6x+3x+8x=6+3+12+8\)

\(\Leftrightarrow17x=29\)

\(\Leftrightarrow x=\dfrac{29}{17}\)

Vậy S={\(\dfrac{29}{17}\)}

22 tháng 4 2017

a) 1x3+3=x32x1x−3+3=x−32−x ĐKXĐ: x2x≠2

Khử mẫu ta được: 1+3(x2)=(x3)1+3x6=x+31+3(x−2)=−(x−3)⇔1+3x−6=−x+3

3x+x=3+613x+x=3+6−1

⇔4x = 8

⇔x = 2.

x = 2 không thỏa ĐKXĐ.

Vậy phương trình vô nghiệm.

b) 2x2x2x+3=4xx+3+272x−2x2x+3=4xx+3+27 ĐKXĐ:x3x≠−3

Khử mẫu ta được:

14(x+3)14x214(x+3)−14x2= 28x+2(x+3)28x+2(x+3)

14x2+42x14x2=28x+2x+6⇔14x2+42x−14x2=28x+2x+6

a: \(\Leftrightarrow5x-2+\left(2x-1\right)\left(1-x\right)=2-2x-2x^2-2x+6\)

\(\Leftrightarrow5x-2+2x-2x^2-1+x=-2x^2-4x+8\)

=>8x-3=-4x+8

=>-4x=11

hay x=-11/4

b: \(\Leftrightarrow\left(-2x+5\right)\left(3x-1\right)+3\left(x^2-1\right)=\left(x+2\right)\left(1-3x\right)\)

\(\Leftrightarrow-6x^2+2x+15x-5+3x^2-3=x-3x^2+2-6x\)

\(\Leftrightarrow17x-8=-5x+2\)

=>22x=10

hay x=5/11

26 tháng 7 2018

các bn giúp mik với!! vài câu cx được

a: \(\Leftrightarrow-12x-4=8x-2-8-6x\)

=>-12x-4=2x-10

=>-14x=-6

hay x=3/7

b: \(\Leftrightarrow3\left(5x-3\right)-2\left(5x-1\right)=-4\)

=>15x-9-10x+2=-4

=>5x-7=-4

=>5x=3

hay x=3/5(loại)

c: \(\Leftrightarrow x^2-4+3x+3=3+x^2-x-2\)

\(\Leftrightarrow x^2+3x-1=x^2-x+1\)

=>4x=2

hay x=1/2(nhận)

a: \(x< -9:\dfrac{3}{2}=-9\cdot\dfrac{2}{3}=-6\)

b: 2/3x>-2

hay x>-2:2/3=-3

c: \(2x>\dfrac{9}{5}-\dfrac{4}{5}=1\)

hay x>1/2

d: \(\Leftrightarrow x\cdot\dfrac{3}{5}>6-4=2\)

hay x>2:3/5=2x5/3=10/3