Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
Bài 1 :
\(\frac{4x-5}{x-1}=\frac{2+x}{x-1}\)ĐK : x \(\ne\)1
\(\Leftrightarrow\frac{4x-5}{x-1}-\frac{2-x}{x-1}=0\Leftrightarrow\frac{4x-5-2+x}{x-1}=0\)
\(\Rightarrow5x-7=0\Leftrightarrow x=\frac{7}{5}\)( tmđk )
Vậy tập nghiệm của phuwong trình là S= { 7/5 }
b, \(\frac{x-1}{x-2}-3+x=\frac{1}{x-2}\)ĐK : x \(\ne\)2
\(\Leftrightarrow\frac{x-1}{x-2}-\left(3-x\right)=\frac{1}{x-2}\)
\(\Leftrightarrow\frac{x-1}{x-2}-\frac{\left(3-x\right)\left(x-2\right)}{x-2}=\frac{1}{x-2}\)
\(\Leftrightarrow\frac{x-1-3x+6+x^2-2x-1}{x-2}=0\)
\(\Rightarrow x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)( ktmđkxđ )
Vậy phương trình vô nghiệm
c, \(1+\frac{1}{2+x}=\frac{12}{x^3+8}\)ĐK : x \(\ne\)-2
\(\Leftrightarrow\frac{\left(x+2\right)\left(x^2-2x+4\right)+x^2-2x+4-12}{\left(x+2\right)\left(x^2-2x+4\right)}=0\)
\(\Rightarrow x^3+8+x^2-2x+4-12=0\)
\(\Leftrightarrow x^3+x^2-2x=0\Leftrightarrow x\left(x^2+x-2\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+2\right)=0\Leftrightarrow x=0;x=1;x=-2\left(ktm\right)\)
Vậy tập nghiệm của phương trình là S = { 0 ; 1 }
d, đưa về dạng hđt
Bài 2 : làm tương tự, chỉ khác ở chỗ mẫu số phức tạp hơn tí thôi
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
\(\Leftrightarrow y^2=12-4y\Leftrightarrow z^2=16\Rightarrow z=+-4\Rightarrow\orbr{\begin{cases}y=2\\y=-6\left(loai\right)\end{cases}}\)\(\Rightarrow\left(x-\frac{1}{2}\right)^2=\frac{9}{4}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}+\frac{3}{2}=2\\x=\frac{1}{2}-\frac{3}{2}=-1\end{cases}}\)
\(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{x^2-4x+3}\left(x\ne1;x\ne3\right)\)
\(\Leftrightarrow\frac{x+5}{x-1}-\frac{x+1}{x-3}+\frac{8}{x^2-4x+3}=0\)
\(\Leftrightarrow\frac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}+\frac{8}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2+2x-15}{\left(x-1\right)\left(x-3\right)}-\frac{x^2-1}{\left(x-3\right)\left(x-1\right)}+\frac{8}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2+2x-15-x^2+1+8}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Rightarrow2x-4=0\)
<=> 2x=4
<=> x=2 (tmđk)
Vậy x=2
b) \(\frac{x+1}{x-2}-\frac{5}{x+2}=\frac{12}{x^2-4}+1\left(x\ne\pm2\right)\)
\(\Leftrightarrow\frac{x+1}{x-2}-\frac{5}{x+2}-\frac{12}{\left(x-2\right)\left(x+2\right)}-1=0\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{12}{\left(x-2\right)\left(x+2\right)}-\frac{x^2-4}{x^2-4}=0\)
\(\Leftrightarrow\frac{x^2+3x+2-5x+10-12-x^2+4}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{-2x+2}{\left(x-2\right)\left(x+2\right)}=0\)
=> -2x+2=0
<=> -2x=-2
<=> x=1 (tmđk)
Vậy x=1
1:
a: =>3x=6
=>x=2
b: =>4x=16
=>x=4
c: =>4x-6=9-x
=>5x=15
=>x=3
d: =>7x-12=x+6
=>6x=18
=>x=3
2:
a: =>2x<=-8
=>x<=-4
b: =>x+5<0
=>x<-5
c: =>2x>8
=>x>4
Anh giải câu a thôi. Câu b hoàn toàn tương tự.
\(\left(x-1\right)\left(5x+3\right)-\left(x-1\right)\left(3x-8\right)=0\)
\(\left(x-1\right)\left(2x+11\right)=0\)
a) \(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{x^2-4x+3}\)
\(ĐKXĐ:\)\(x\ne1\)và \(x\ne3\)
\(\frac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)9x-3}=\frac{\left(x+1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{8}{\left(x-3\right)\left(x-1\right)}\)
\(\Leftrightarrow\)\(x^2-3x+5x-15=x^2-x+x-1-8\)
\(\Leftrightarrow\)\(x^2-3x+5x-15-x^2+x-x+1+8=0\)
\(\Leftrightarrow\)\(2x-6=0\)
\(\Leftrightarrow\)\(2x=6\)
\(\Leftrightarrow\)\(x=3\)( loại )
Vậy \(S=\varnothing\)
b) \(\frac{y+1}{y-2}-\frac{5}{y+2}=\frac{12}{y^2-4}+1\)
\(ĐKXĐ:\)\(y\ne2\)và \(y\ne-2\)
\(\frac{\left(y+1\right)\left(y+2\right)}{\left(y-2\right)\left(y+2\right)}-\frac{5\left(y-2\right)}{\left(y-2\right)\left(y+2\right)}=\frac{12}{\left(y-2\right)\left(y+2\right)}+\frac{\left(y-2\right)\left(y+2\right)}{\left(y-2\right)\left(y+2\right)}\)
\(\Leftrightarrow\)\(y^2+2y+y+2-5y+10=12+y^2-4\)
\(\Leftrightarrow\)\(y^2+2y+y+2-5y+10-10-12-y^2+4=0\)
\(\Leftrightarrow\)\(-2y+4=0\)
\(\Leftrightarrow\)\(-2y=-4\)
\(\Leftrightarrow\)\(y=2\)( loại 0
Vậy \(S=\varnothing\)
a,\(2x+5=2-x\)
\(< =>2x+x+5-2=0\)
\(< =>3x+3=0\)
\(< =>x=-1\)
b, \(/x-7/=2x+3\)
Với \(x\ge7\)thì \(PT< =>x-7=2x+3\)
\(< =>2x-x+3+7=0\)
\(< =>x+10=0< =>x=-10\)( lọai )
Với \(x< 7\)thì \(PT< =>7-x=2x+3\)
\(< =>2x+x+3-7=0\)
\(< =>3x-4=0< =>x=\frac{4}{3}\) ( loại )
c,\(\frac{4}{x+2}-\frac{4x-6}{4x-x^3}=\frac{x-3}{x\left(x-2\right)}\left(đk:x\ne-2;0;2\right)\)
\(< =>\frac{4x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{4x-6}{x\left(x-2\right)\left(2+x\right)}=\frac{\left(x-3\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)
\(< =>4x^2-8x+4x-6=x^2-x-6\)
\(< =>4x^2-x^2-4x+x-6+6=0\)
\(< =>3x^2-3x=0< =>3x\left(x-1\right)=0< =>\orbr{\begin{cases}x=0\left(loai\right)\\x=1\left(tm\right)\end{cases}}\)
nhân vào rồi chi cho x,xong đặt là ra