Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
Câu 1: Ta có
\(\sqrt{x}=\sqrt{17-12\sqrt{2}}=\sqrt{9-2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}=\sqrt{\left(3-2\sqrt{2}\right)^2}=3-2\sqrt{2}\)
Vậy thì \(f\left(x\right)=\frac{1-3+2\sqrt{2}+17-2\sqrt{2}}{3-2\sqrt{2}}=\frac{15}{3-2\sqrt{2}}=45+30\sqrt{2}\)
Câu 2: ĐK: \(0\le x\le1\)
\(pt\Leftrightarrow\sqrt{3x\left(x+1\right)}+\sqrt{x\left(1-x\right)}=2x+1\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{3x+3}+\sqrt{1-x}\right)=\frac{1}{2}\left(4x+2\right)\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{3x+3}+\sqrt{1-x}\right)=\frac{1}{2}\left[\left(3x+3\right)-\left(1-x\right)\right]\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{3x+3}+\sqrt{1-x}\right)=\frac{1}{2}\left(\sqrt{3x+3}+\sqrt{1-x}\right)\left(\sqrt{3x+3}-\sqrt{1-x}\right)\)
\(\Leftrightarrow\left(\sqrt{3x+3}+\sqrt{1-x}\right)\left[\sqrt{x}-\frac{1}{2}\left(\sqrt{3x+3}-\sqrt{1-x}\right)\right]=0\)
TH1: \(\sqrt{3x+3}+\sqrt{1-x}=0\Leftrightarrow\hept{\begin{cases}3x+3=0\\1-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\x=1\end{cases}}\) (Vô lý)
TH2: \(2\sqrt{x}-\sqrt{3x+3}+\sqrt{1-x}=0\)
\(\Leftrightarrow2\sqrt{x}+\sqrt{1-x}=\sqrt{3x+3}\Leftrightarrow4x+1-x+4\sqrt{x\left(1-x\right)}=3x+3\)
\(\Leftrightarrow4\sqrt{x\left(1-x\right)}=2\Leftrightarrow x=\frac{1}{2}\left(tm\right)\)
Vậy phương trình có nghiệm \(x=\frac{1}{2}\)
ok tớ sẽ giải nhunh ! sửa câu 2 đi rồi tớ sẽ làm cho bn !
câu 1 ) thì đúng
câu 2 sai đề
a)\(\left(x-1\right)\sqrt{x+1}+\sqrt{2x+1}=\sqrt{x+2}\)
ĐK:\(x\ge-\frac{1}{2}\)
\(\Leftrightarrow\left(x-1\right)\sqrt{x+1}+\sqrt{2x+1}-\sqrt{3}=\sqrt{x+2}-\sqrt{3}\)
\(\Leftrightarrow\left(x-1\right)\sqrt{x+1}+\frac{2x+1-3}{\sqrt{2x+1}+\sqrt{3}}=\frac{x+2-3}{\sqrt{x+2}+\sqrt{3}}\)
\(\Leftrightarrow\left(x-1\right)\sqrt{x+1}+\frac{2x-2}{\sqrt{2x+1}+\sqrt{3}}=\frac{x-1}{\sqrt{x+2}+\sqrt{3}}\)
\(\Leftrightarrow\left(x-1\right)\sqrt{x+1}+\frac{2\left(x-1\right)}{\sqrt{2x+1}+\sqrt{3}}-\frac{x-1}{\sqrt{x+2}+\sqrt{3}}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\sqrt{x+1}+\frac{2}{\sqrt{2x+1}+\sqrt{3}}-\frac{1}{\sqrt{x+2}+\sqrt{3}}\right)=0\)
Suy ra x=1
b)\(\frac{1}{\left(x-1\right)^2}+\sqrt{3x+1}=\frac{1}{x^2}+\sqrt{x+2}\)
\(\Leftrightarrow\frac{1}{\left(x-1\right)^2}-4+\sqrt{3x+1}-\sqrt{\frac{5}{2}}=\frac{1}{x^2}-4+\sqrt{x+2}-\sqrt{\frac{5}{2}}\)
\(\Leftrightarrow\frac{4x^2-8x+3}{-x^2+2x-1}+\frac{3x+1-\frac{5}{2}}{\sqrt{3x+1}+\sqrt{\frac{5}{2}}}=\frac{-\left(4x^2-1\right)}{x^2}+\frac{x+2-\frac{5}{2}}{\sqrt{x+2}+\sqrt{\frac{5}{2}}}\)
\(\Leftrightarrow\frac{2\left(x-\frac{1}{2}\right)\left(2x-3\right)}{-x^2+2x-1}+\frac{6\left(x-\frac{1}{2}\right)}{\sqrt{3x+1}+\sqrt{\frac{5}{2}}}+\frac{2\left(x-\frac{1}{2}\right)\left(2x+1\right)}{x^2}-\frac{x-\frac{1}{2}}{\sqrt{x+2}+\sqrt{\frac{5}{2}}}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)\left(\frac{2\left(2x-3\right)}{-x^2+2x-1}+\frac{6}{\sqrt{3x+1}+\sqrt{\frac{5}{2}}}+\frac{2\left(2x+1\right)}{x^2}-\frac{1}{\sqrt{x+2}+\sqrt{\frac{5}{2}}}\right)=0\)
Suy ra x=1/2
96 đặt\(\sqrt{x+7}+\sqrt{6-x}=a\)
=>\(a^2-13=2\sqrt{-x^2-x+42}\)
xong cậu thay vào pt là đc
a) dat x-1=a
x=a+1
\(a+1+\sqrt{5+\sqrt{a}}=6\)
\(5-a=\sqrt{5+\sqrt{a}}\)
\(25-10a+a^2=5+\sqrt{a}\)
\(20-10a+a^2-\sqrt{a}=0\)
(a - \sqrt{5} - 5) (a + \sqrt{a} - 4) = 0
\(\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\)
\(\Leftrightarrow\left(2x-\sqrt{y}\right)^2\left(x^2+x\sqrt{y}+y\right)=0\)
\(\hept{\begin{cases}\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\left(1\right)\\\sqrt{y+\sqrt{y}+x+2}+\sqrt{3x+1}=5\left(2\right)\end{cases}}\)
\(ĐK:y>0;\frac{-1}{3}\le x\ne0;y+\sqrt{y}+x+2\ge0\)
Đặt \(\sqrt{y}=tx\Rightarrow y=t^2x^2\)thay vào (1), ta được: \(\frac{1}{3x}+\frac{2x}{3t^2x^2}=\frac{x+tx}{2x^2+t^2x^2}\)
Rút gọn biến x ta đưa về phương trình ẩn t : \(\left(t-2\right)^2\left(t^2+t+1\right)=0\Leftrightarrow t=2\Leftrightarrow\sqrt{y}=2x\ge0\)
Thay vào (2), ta được: \(\sqrt{4x^2+3x+2}+\sqrt{3x+1}=5\)\(\Leftrightarrow\left(\sqrt{4x^2+3x+2}-3\right)+\left(\sqrt{3x+1}-2\right)=0\)\(\Leftrightarrow\frac{\left(x-1\right)\left(4x+7\right)}{\sqrt{4x^2+3x+2}+3}+\frac{3\left(x-1\right)}{\sqrt{3x+1}+2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{4x+7}{\sqrt{4x^2+3x+2}+3}+\frac{3}{\sqrt{3x+1}+2}\right)=0\)
Dễ thấy \(\frac{4x+7}{\sqrt{4x^2+3x+2}+3}+\frac{3}{\sqrt{3x+1}+2}>0\)nên \(x-1=0\Leftrightarrow x=1\Rightarrow y=4\)
Vậy hệ phương trình có 1 nghiệm duy nhất \(\left(x,y\right)=\left(1,4\right)\)
\(\Leftrightarrow x^2-1+2\sqrt{x}.\sqrt{x^2-1}-3x=0\)
đặt \(\sqrt{x^2-1}=a;\sqrt{x}=b\)
=>a2+2ab-3b2=0
đến đây dễ rồi
Điều kiện -1 =<x<0
Chia cả 2 vế cho x ta nhận được \(x+2\sqrt{x-\frac{1}{x}}=3+\frac{1}{x}\)
Đặt t=\(x-\frac{1}{x}\)ta giải được