K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2016

Giải các phương trình và hệ phương trình:

a) x2 - \(2\sqrt{5}\)x + 5 = 0

Ta có: x2 - \(2\sqrt{5}\)x + 5 = 0 <=> ( x = \(\sqrt{5}\) )2 = 0 <=> x - \(\sqrt{5}\) = 0 <=> x = \(\sqrt{5}\)

Vậy phương trình đã cho có tập nghiệm S = ( \(\sqrt{5}\) )

24 tháng 7 2016

c) \(\begin{cases}2x+5y=-1\\3x-2y=8\end{cases}\) <=> \(\begin{cases}6x+15y=-3\\6x-4y=16\end{cases}\) <=> \(\begin{cases}19y=-19\\3x-2y=8\end{cases}\) <=> \(\begin{cases}y=-1\\3x-2.\left(-1\right)=8\end{cases}\) <=> \(\begin{cases}y=-1\\x=2\end{cases}\)

Vậy hệ phương trình có 1 nghiệm duy nhất (x ; y) = (2 ; -1)

18 tháng 2 2016

ĐK:x\(\ge\)0

Đặt t=x2+3x(t\(\ge\) 0)ta được:

\(\sqrt{t+12}=t\Leftrightarrow t^2=t+12\)

<=>t2-t-12=0

\(\Delta=49\Rightarrow\sqrt{\Delta}=7\)

\(\Delta>0,\text{phương trình có 2 nghiệm phân biệt}\)

\(t_1=4\left(thỏa\right);t_2=-3\left(loại\right)\)

t=4=>x2+3x=4

<=>x2+3x-4=0

\(\Delta=25\Rightarrow\sqrt{\Delta}=5;\Delta>0,pt\text{ có 2 nghiệm phân biệt:}\)

\(x_1=1\left(thỏa\right);x_2=-4\left(loại\right)\)

Vậy S={1}

5 tháng 9 2015

\(\text{ĐKXĐ: }-3x+6\ge0\)

\(\Leftrightarrow-3x\ge-6\)

\(\Leftrightarrow x\le2\)

\(x^2-4x+4=\sqrt{-3x+6}\)

\(\Leftrightarrow\left(x-2\right)^2=\sqrt{-3.\left(x-2\right)}\)

\(\Leftrightarrow\left(x-2\right)^4=-3.\left(x-2\right)\)

\(\Leftrightarrow\left(x-2\right)^3=-3\)

\(\Leftrightarrow\left(x-2\right)^3=\left(\sqrt[3]{-3}\right)^3\)

\(\Leftrightarrow x-2=\sqrt[3]{-3}\)

\(\Leftrightarrow x=\sqrt[3]{-3}+2\)\(\left(\text{thỏa mãn}\right)\)

\(\text{Vậy }x=\sqrt[3]{-3}+2\)

19 tháng 12 2015

a) Cả hai phương trình đều có chung \(\sqrt{x+3}\)

pt đầu suy ra  \(\sqrt{x+3}=2\sqrt{y-1}\)

pt sau suy ra \(\sqrt{x+3}=4-\sqrt{y+1}\)

Vậy \(2\sqrt{y-1}=4-\sqrt{y+1}\), đk y > 1

\(4\left(y-1\right)=16-8\sqrt{y+1}+y+1\)

\(8\sqrt{y+1}+3y-21=0\)

Đặt \(\sqrt{y+1}=t\)

=> y = t2 - 1

=> 8t + 3(t2 -1) -21 =0

3t2 + 8t - 24 = 0

=> t = ...

=> y = t2 - 1

=> \(\sqrt{x+3}=2\sqrt{y-1}\)

=> x =...

b) Trừ hai pt cho nhau ta có:

x2 - y2 = 3(y - x)

(x - y) (x + y + 3) = 0

=> x = y hoặc x + y + 3 = 0

Xét hai trường hợp, rút x theo y rồi thay trở lại một trong hai pt ban đầu tìm ra nghiệm