Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{x^2-x+1}+\dfrac{2}{x^2-x+2}+\dfrac{3}{x^2-x+3}+...+\dfrac{2018}{x^2-x+2018}=2018\)
\(\Leftrightarrow\left(\dfrac{1}{x^2-x+1}-1\right)+\left(\dfrac{2}{x^2-x+2}-1\right)+\left(\dfrac{3}{x^2-x+3}-1\right)+...+\left(\dfrac{2018}{x^2-x+2018}-1\right)=0\)
\(\Leftrightarrow\dfrac{1-x^2+x-1}{x^2-x+1}+\dfrac{2-x^2+x-2}{x^2-x+2}+\dfrac{3-x^2+x-3}{x^2-x+3}+...+\dfrac{2018-x^2+x-2018}{x^2-x+2018}=0\)
\(\Leftrightarrow-\left(x^2-x\right)\left(\dfrac{1}{x^2-x+1}+\dfrac{1}{x^2-x+2}+\dfrac{1}{x^2-x+3}+...+\dfrac{1}{x^2-x+2018}\right)=0\)
Ta có: \(\dfrac{1}{x^2-x+1}+\dfrac{1}{x^2-x+2}+...+\dfrac{1}{x^2-x+2018}>0\)
\(\Leftrightarrow x^2-x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Câu 1:
a)
\(A=\sqrt{2018}-\sqrt{2017}=\frac{2018-2017}{\sqrt{2018}+\sqrt{2017}}=\frac{1}{\sqrt{2018}+\sqrt{2017}}> \frac{1}{\sqrt{2019}+\sqrt{2018}}=\frac{2019-2018}{\sqrt{2019}+\sqrt{2018}}=\sqrt{2019}-\sqrt{2018}=B\)
Vậy $A> B$
b)
\(x+\frac{1}{x}=3\Rightarrow (x+\frac{1}{x})^2=9\Rightarrow x^2+\frac{1}{x^2}+2=9\Rightarrow x^2+\frac{1}{x^2}=7\)
\(x^3+\frac{1}{x^3}=(x^2+\frac{1}{x^2})(x+\frac{1}{x})-(x+\frac{1}{x})=7.3-3=18\)
Do đó:
\(D=x^5+\frac{1}{x^5}=(x^2+\frac{1}{x^2})(x^3+\frac{1}{x^3})-(x+\frac{1}{x})=7.18-3=123\)
C=\(\dfrac{x-x^3}{x^2+1}\left(\dfrac{1}{1+2x+x^2}+\dfrac{1}{1-x^2}\right)+\dfrac{1}{1+x}\)
\(=\dfrac{x\left(1-x^2\right)}{x^2+1}\left(\dfrac{1}{\left(1+x\right)^2}+\dfrac{1}{\left(1-x\right)\left(1+x\right)}\right)+\dfrac{1}{1+x}\)
\(=\dfrac{x\left(1-x\right)\left(1+x\right)}{x^2+1}\left(\dfrac{1-x+1+x}{\left(1-x\right)\left(1+x\right)^2}\right)+\dfrac{1}{1+x}\)
\(=\dfrac{x\left(1-x\right)\left(1+x\right).2}{\left(x^2+1\right)\left(1-x\right)\left(1+x^2\right)}+\dfrac{1}{1+x}\)
\(=\dfrac{2x}{\left(x^2+1\right)\left(1+x\right)}+\dfrac{1}{1+x}\)
\(=\dfrac{2x+\left(x^2+1\right)}{\left(x^2+1\right)\left(1+x\right)}\)
\(=\dfrac{2x+x^2+1}{\left(x^2+1\right)\left(x+1\right)}\)
\(=\dfrac{x^2+2x+1}{\left(x^2+1\right)\left(x+1\right)}\)
\(=\dfrac{\left(x+1\right)^2}{\left(x^2+1\right)\left(x +1\right)}\)
\(=\dfrac{x+1}{x^2+1}\)
2.
\(P=\dfrac{\sqrt{x-2018}}{x+2}+\dfrac{\sqrt{x-2019}}{x}\)\(P=\dfrac{\sqrt{\left(x-2018\right).2020}}{\left(x+2\right)\sqrt{2020}}+\dfrac{\sqrt{\left(x-2019\right).2019}}{\sqrt{2019}.x}\)
Áp dụng BĐT AM-GM:
\(\sqrt{\left(x-2018\right).2020}\le\dfrac{1}{2}\left(x-2018+2020\right)=\dfrac{1}{2}\left(x+2\right)\)
\(\sqrt{\left(x-2019\right).2019}\le\dfrac{1}{2}\left(x-2019+2019\right)=\dfrac{1}{2}x\)
\(\Rightarrow P\le\dfrac{x+2}{2\sqrt{2020}\left(x+2\right)}+\dfrac{x}{2\sqrt{2019}.x}=\dfrac{1}{2\sqrt{2020}}+\dfrac{1}{2\sqrt{2019}}\)
\("="\Leftrightarrow x=4038\)
không phải bơ đâu, oan cho tớ quá :>
27/11 thi nên ít lên, với cả chị tớ cũng không cho chat :>
lấy mật khẩu của tớ vô đọc góc ib là biết mà :>
Ta có \(x=\sqrt{\dfrac{1}{2\sqrt{3}-2}-\dfrac{3}{2\sqrt{3}+2}}=\sqrt{\dfrac{2\sqrt{3}+2}{\left(2\sqrt{3}-2\right)\left(2\sqrt{3}+2\right)}-\dfrac{3\left(2\sqrt{3}-2\right)}{\left(2\sqrt{3}-2\right)\left(2\sqrt{3}+2\right)}}=\sqrt{\dfrac{2\left(\sqrt{3}+1\right)}{12-4}-\dfrac{2\left(3\sqrt{3}-3\right)}{12-4}}=\sqrt{\dfrac{\sqrt{3}+1}{4}-\dfrac{3\sqrt{3}-3}{4}}=\sqrt{\dfrac{\sqrt{3}+1-3\sqrt{3}+3}{4}}=\sqrt{\dfrac{4-2\sqrt{3}}{4}}=\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{4}}=\dfrac{\sqrt{3-2\sqrt{3}+1}}{2}=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{2}=\dfrac{\left|\sqrt{3}-1\right|}{2}=\dfrac{\sqrt{3}-1}{2}\Leftrightarrow2x=\sqrt{3}-1\Leftrightarrow2x+1=\sqrt{3}\Leftrightarrow\left(2x+1\right)^2=3\Leftrightarrow4x^2+4x-2=0\Leftrightarrow2x^2+2x-1=0\)
Ta lại có \(P=\dfrac{4\left(x+1\right)x^{2018}-2x^{2017}+2x+1}{2x^2+3x}=\dfrac{2x^{2017}\left[2\left(x+1\right)x-1\right]+\sqrt{3}}{2x^2+2x-1+x+1}=\dfrac{2x^{2017}\left[2x^2+2x-1\right]+\sqrt{3}}{x+1}=\dfrac{\sqrt{3}}{x+1}=\sqrt{3}:\left(x+1\right)=\sqrt{3}:\left(\dfrac{\sqrt{3}-1}{2}+1\right)=\sqrt{3}:\dfrac{\sqrt{3}+1}{2}=\dfrac{2\sqrt{3}}{\sqrt{3}+1}=\dfrac{2\sqrt{3}\left(\sqrt{3}-1\right)}{3-1}=\dfrac{2\left(3-\sqrt{3}\right)}{2}=3-\sqrt{3}\)Vậy khi \(x=\sqrt{\dfrac{1}{2\sqrt{3}-2}-\dfrac{3}{2\sqrt{3}+2}}\) thì P=\(3-\sqrt{3}\)
\(\text{a) }\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}\\ =\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+2\left(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}\right)-2\left(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}\right)}\\ =\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2\cdot\dfrac{x+y+z}{xyz}}\\ =\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\)
\(\text{b) }\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+...+\sqrt{1+\dfrac{1}{2017^2}+\dfrac{1}{2018^2}}\\ =1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+...+1+\dfrac{1}{2017}-\dfrac{1}{2018}\\ =2016+\dfrac{1}{2}-\dfrac{1}{2018}\\ =\dfrac{2034698}{1009}\)
bài 2: ta có : \(Q=\left(\dfrac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\dfrac{1-a}{\sqrt{1-a^2}-\left(1-a\right)}\right)\left(\sqrt{\dfrac{1}{a^2}-1}-\dfrac{1}{a}\right).\sqrt{a^2-2a+1}\)
\(\Leftrightarrow Q=\left(\dfrac{\sqrt{1+a}\sqrt{1-a}+1-a}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\dfrac{\sqrt{1-a^2}}{a}-\dfrac{1}{a}\right)\left(1-a\right)\) \(\Leftrightarrow Q=\left(\dfrac{\sqrt{1+a}+\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\right)\left(\dfrac{\sqrt{1-a^2}-1}{a}\right)\left(1-a\right)\) \(\Leftrightarrow Q=\left(\dfrac{\sqrt{1-a^2}+1}{a}\right)\left(\dfrac{\sqrt{1-a^2}-1}{a}\right)\left(1-a\right)\) \(\Leftrightarrow Q=\left(\dfrac{1-a^2-1}{a^2}\right)\left(1-a\right)=a-1\)b) ta có : \(Q^3-Q=\left(a-1\right)\left(\left(a-1\right)^2-1\right)=a\left(a-1\right)\left(a-2\right)\)
mà ta có : \(\left\{{}\begin{matrix}a>0\\a-1< 0\\a-2< 0\end{matrix}\right.\Rightarrow a\left(a-1\right)\left(a-2\right)>0\) \(\Rightarrow Q^3-Q>0\Leftrightarrow Q^3>Q\)
vậy \(Q^3>Q\)
Nguyễn Huy TúAkai HarumaLightning FarronNguyễn Thanh Hằngsoyeon_Tiểubàng giảiMashiro ShiinaVõ Đông Anh Tuấn
Hoàng Lê Bảo NgọcTrần Việt Linh
cứu tôi với