Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TQ: \(\left|A\left(x\right)\right|=\left|B\left(x\right)\right|\Leftrightarrow\left[{}\begin{matrix}A\left(x\right)=B\left(x\right)\\A\left(x\right)=-B\left(x\right)\end{matrix}\right.\)
pt \(\Leftrightarrow\left|1+4x\right|=\left|7x-2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}1+4x=7x-2\\1+4x=-\left(7x-2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=3\\11x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{11}\end{matrix}\right.\left(TM\right)\)
Vậy tập nghiệm của pt đã cho là \(S=\left\{1;\frac{1}{11}\right\}\)
a) \(\left(4x-10\right)\left(24+5x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{10}{4}=\dfrac{5}{2}\\x=-\dfrac{24}{5}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{24}{5};\dfrac{5}{2}\right\}\)
b) \(\left(3.5-7x\right)\left(0.1x+2.3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3.5-7x=0\\0.1x+2.3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3.5}{7}=\dfrac{1}{2}\\x=-\dfrac{2.3}{0.1}=-23\end{matrix}\right.\)
Vậy \(S=\left\{-23;\dfrac{1}{2}\right\}\)
f, 3x2+4x-4=0
\(\Leftrightarrow\)3x2+6x-2x-4=0
\(\Leftrightarrow\)3x(x+2)-2(x+2)=0
\(\Leftrightarrow\)(x+2)(3x-2)=0
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\3x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-2\\x=\frac{2}{3}\end{matrix}\right.\left(tm\right)\)
Vậy pt có tập nghiệm S = \(\left\{-2;\frac{2}{3}\right\}\)
\(\frac{5x-3}{6}-\frac{7x-1}{4}-\frac{4x+2}{7}+5=0\)
<=> \(\frac{14\left(5x-3\right)-21\left(7x-1\right)-12\left(4x+2\right)+420}{84}=0\)
<=> 70x - 42 - 147x + 21 - 48x -24 + 420 = 0
<=> -125x + 375 = 0
<=> -125x = -375
<=> x = 3
Vậy S = {3}
\(\frac{3\left(2x+1\right)}{4}-5-\frac{3x+2}{10}=\frac{2\left(3x-1\right)}{5}\)
<=> \(\frac{15\left(2x+1\right)-100-2\left(3x+2\right)}{20}=\frac{8\left(3x-1\right)}{20}\)
<=> 30x + 15 - 100 - 6x - 4 = 24x - 8
<=> 24x - 24x = -8 + 89
<=> 0x = 81
=> pt vô nghiệm
(x2 + x + 1)(6 - 2x) = 0
<=> 6 - 2x = 0 (do x2 + x + 1 > 0)
<=> 2x = 6
<=> x = 3
Vậy S = {3}
(8x - 4)(x2 + 2x + 2) = 0
<=> 8x - 4 = 0 (vì x2 + 2x + 2 > 0)
<=> 8x = 4
<=> x = 1/2
Vậy S = {1/2}
x3 - 7x + 6 = 0
<=> x3 - x - 6x + 6 = 0
<=> x(x2 - 1) - 6(x - 1) = 0
<=> x(x - 1)(x + 1) - 6(x - 1) = 0
<=> (x2 + x - 6)(x - 1) = 0
<=> (x2 + 3x - 2x - 6)(x - 1) = 0
<=> (x + 3)(x - 2)(x - 1) = 0
<=> x + 3 = 0
hoặc x - 2 = 0
hoặc x - 1 = 0
<=> x = -3
hoặc x = 2
hoặc x = 1
Vậy S = {-3; 1; 2}
x5 - 5x3 + 4x = 0
<=> x(x4 - 5x2 + 4) = 0
<=> x(x4 - x2 - 4x2 + 4) = 0
<=> x[x2(x2 - 1) - 4(x2 - 1)] = 0
<=> x(x - 2)(x + 2)(x - 1)(x + 1) = 0
<=> x = 0 hoặc x - 2 = 0 hoặc x + 2 = 0 hoặc x - 1 = 0 hoặc x + 1 = 0
<=> x = 0 hoặc x = 2 hoặc x = -2 hoặc x = 1 hoặc x = -1
Vậy S = {-2; -1; 0; 1; 2}
+ Ta có: \(\left(x^2+x+1\right).\left(6-2x\right)=0\)
- Ta lại có: \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
- Vì \(x^2+x+1>0\forall x\)mà \(\left(x^2+x+1\right).\left(6-2x\right)=0\)
\(\Rightarrow6-2x=0\Leftrightarrow-2x=-6\Leftrightarrow x=3\left(TM\right)\)
Vậy \(S=\left\{3\right\}\)
+ Ta có: \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)
- Ta lại có: \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1>0\forall x\)
- Vì \(x^2+2x+2>0\forall x\)mà \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)
\(\Rightarrow8x-4=0\Leftrightarrow8x=4\Leftrightarrow x=\frac{1}{2}\left(TM\right)\)
Vậy \(S=\left\{\frac{1}{2}\right\}\)
+ Ta có: \(x^3-7x+6=0\)
\(\Leftrightarrow\left(x^3-x^2\right)+\left(x^2-x\right)+\left(6x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right).\left(x^2+x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right).\left[\left(x^2-2x\right)+\left(3x-6\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right).\left(x-2\right).\left(x+3\right)=0\)
Vậy \(S=\left\{-3;1;2\right\}\)
+ Ta có: \(x^5-5x^3+4x=0\)
\(\Leftrightarrow x.\left[\left(x^4-x^2\right)-\left(4x^2-4\right)\right]=0\)
\(\Leftrightarrow x.\left[x^2.\left(x^2-1\right)-4.\left(x^2-1\right)\right]=0\)
\(\Leftrightarrow x.\left(x^2-1\right).\left(x^2-4\right)=0\)
\(\Leftrightarrow x=0\left(TM\right)\)
hoặc \(x^2-1=0\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\left(TM\right)\)
hoặc \(x^2-4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\left(TM\right)\)
Vậy \(S=\left\{-2;-1;0;1;2\right\}\)
!!@@# ^_^ Chúc bạn hok tốt ^_^#@@!!
x3-4x2+7x-6=0
=>x3-2x2-2x2+3x+4x-6=0
=>x3-2x2+3x-2x2+4x-6=0
=>x(x2-2x+3)-2(x2-2x+3)=0
=>(x-2)(x2-2x+3)=0
=>x-2=0 hoặc x2-2x+3=0
- Với x-2=0 =>x=2
- Với x2-2x+3=0 =>vô nghiệm
Vậy pt trên có nghiệm là x=2
a)\(\left(x^2+1\right)\left(x^2-4x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x^2-4x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=-1\left(vn\right)\\\left(x-2\right)^2=0\end{cases}\Rightarrow}x=2}\)
b)\(\left(3x-2\right)\left(\frac{2x+6}{7}-\frac{4x-3}{5}\right)=0\\ \Rightarrow\left(3x-2\right)\left(\frac{10x+30-28x+21}{35}\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(\frac{-18x+51}{35}\right)=0\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{17}{6}\end{cases}}\)
c)\(\left(3,3-11x\right)\left(\frac{21x+6+10-30x}{15}\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{10}\\x=\frac{16}{9}\end{cases}}\)
TH1 : \(1+4x\ge0;7x-2\ge0\)
\(\Rightarrow\left|1+4x\right|-\left|7x-2\right|=1+4x-7x+2=0\)
\(\Leftrightarrow3-3x=0\)
\(\Leftrightarrow x=1\)(TM)
TH2 : \(1+4x\le0;7x-2\le0\)
\(\Rightarrow\left|1+4x\right|-\left|7x-2\right|=-1-4x+7x-2=0\)
\(\Leftrightarrow3x-3=0\)
\(\Leftrightarrow x=1\)(loại) Bạn thử x = 1 vào 1 + 4x nếu 1 + 4x \(\le\)0 thì lấy còn \(\ge\)0 thì loại
TH3 : \(1+4x\ge0;7x-2\le0\)
\(\Rightarrow\left|1+4x\right|-\left|7x-2\right|=1+4x+7x-2=0\)
\(\Leftrightarrow11x-1=0\)
\(\Leftrightarrow x=\frac{1}{11}\)(TM)
TH4 : \(1+4x\le0;7x-2\ge0\)
\(\Rightarrow\left|1+4x\right|-\left|7x-2\right|=-1-4x-7x+2=0\)
\(\Leftrightarrow1-11x=0\)
\(\Leftrightarrow x=\frac{1}{11}\)(loại)
Vậy \(S=\left\{\frac{1}{11};1\right\}\)
|1+4x| - |7x-2| =0 (*)
ta có: +) 1+4x=0 =>4x =-1 =>x=-1/4
+)7x-2=0 =>7x=2 =>x =7/2
=> ta có bảng sau:
x -1/4 7/2
1+4x - 0 + | +
7x-2 - | - 0 +
TH 1: x <-1/4 => 1+4x <0 =>|1+4x|=-(1+4x)
7x-2 <0 |7x-2|=-(7x-2)
(*) =>-(1+4x)+(7x-2)=0
=>-1-4x+7x-2=0
=>-3+3x=0
=>3x=3
=>x=1 ( không t/m x < -1/4 )
TH 2: -1/4 _< x _< 7/2 => 1+4x >0 =>|1+4x|=1+4x
7x-2 <0 |7x-2|=-(7x-2)
(*) =>1+4x+(7x-2)=0
=>1+4x+7x-2=0
=>11x-1 =0
=>11x=1
=>x=1/11 ( t/m -1/4 _< x <7/2)
TH 3: 7/2 > x =>1+4x >0 => |1+4x|=1+4x
7x-2 >0 |7x-2|=7x-2
(*) => 1+4x-(7x-2)=0
=>1+4x-7x+2=0
=>3-3x=0
=>3x =3
=>x=1 ( t/m 7/2 >x)
từ 3 trường hợp trên =>x { 1/11 ;1}