Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}2x+5y=10\\-2x-5y=-12\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+5y=10\\2x+5y-2x-5y=10-12\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+5y=10\\0=-2\left(vô.lí\right)\end{matrix}\right.\)
vậy hệ phương trình vô nghiệm
Có \(\dfrac{2}{-2}=\dfrac{5}{-5}\ne\dfrac{10}{-12}\) nên hệ vô nghiệm (sách giáo khoa)
Cách 1
Từ (1) ta rút ra được y = 3x – 5 (*)
Thế (*) vào phương trình (2) ta được :
5x + 2(3x – 5) = 23 ⇔ 5x + 6x – 10 = 23 ⇔ 11x = 33 ⇔ x = 3.
Thay x = 3 vào (*) ta được y = 3.3 – 5 = 4.
Vậy hệ phương trình có nghiệm duy nhất (3 ; 4).
Từ (2) ta rút ra được y = 2x + 8 (*)
Thế (*) vào phương trình (1) ta được :
3x + 5(2x + 8) = 1 ⇔ 3x + 10x + 40 = 1 ⇔ 13x = -39 ⇔ x = -3.
Thay x = - 3 vào (*) ta được y = 2.(-3) + 8 = 2.
Vậy hệ phương trình có nghiệm duy nhất (-3 ; 2).
Từ (1) ta rút ra được x = 2 3 y (*)
Thế (*) vào phương trình (2) ta được :
Thay y = 6 vào (*) ta được x = 4.
Vậy hệ phương trình có nghiệm duy nhất (x ; y) = (4 ; 6).
Cách 2
Kiến thức áp dụng
+ Giải hệ phương trình ta làm như sau:
Bước 1: Từ một phương trình (coi là phương trình thứ nhất), ta biểu diễn x theo y (hoặc y theo x) ta được phương trình (*). Sau đó, ta thế (*) vào phương trình thứ hai để được một phương trình mới ( chỉ còn một ẩn).
Bước 2: Dùng phương trình mới ấy thay thế cho phương trình thứ hai, phương trình (*) thay thế cho phương trình thứ nhất của hệ ta được hệ phương trình mới tương đương .
Bước 3: Giải hệ phương trình mới ta tìm được nghiệm của hệ phương trình.
+ Nếu xuất hiện phương trình dạng 0x = a (hoặc 0y = a) thì ta kết luận hệ phương trình vô nghiệm nếu a ≠ 0 hoặc hệ có vô số nghiệm nếu a = 0.
Giải:
Lấy \(2x\left(1\right)-\left(2\right)\Rightarrow x^2+2xy+y^2-4y-4x+4=0\)
\(\Leftrightarrow\left(x+y\right)^2-4\left(x+y\right)+4=0\Leftrightarrow x+y=2\)
Giải ra được hệ phương trình có nghiệm duy nhất là \(\left(1;1\right)\)
Câu hỏi của Pham Hoàng Lâm - Toán lớp 9 - Học toán với OnlineMath
Đặt \(2x+y-xy=a;xy=b\)
hpt \(\Leftrightarrow\hept{\begin{cases}\frac{b}{2}+\frac{5}{a}=5\\a+\frac{10}{b}=4\left(1\right)\end{cases}}\)\(\Rightarrow\hept{\begin{cases}ab+10=10a\\ab+10=4b\end{cases}}\)
\(\Leftrightarrow10a=4b\Leftrightarrow a=\frac{2b}{5}\)
\(\left(1\right)\Leftrightarrow\frac{2b}{5}+\frac{10}{b}=4\Leftrightarrow b^2+25=10b\Leftrightarrow\left(b-5\right)^2=0\Leftrightarrow b=5\)
\(\Rightarrow a=2\)
Từ đó ta có hệ:
\(\hept{\begin{cases}2x+y-xy=2\\xy=5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}2x+y=7\\xy=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=7-2x\\x\left(7-2x\right)=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x-5\right)\left(x-1\right)=0\\y=7-2x\end{cases}}\)
TH1: \(\hept{\begin{cases}x=1\\y=5\end{cases}}\)
TH2: \(\hept{\begin{cases}x=\frac{5}{2}\\y=2\end{cases}}\)
Vậy...
\(\Leftrightarrow x\left(y+2\right)=-5\left(y+2\right)\\ \Leftrightarrow\left(x+5\right)\left(y+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-5\\y=-2\end{matrix}\right.\)