Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(2x+5\right)\left(x+5\right)-2x^2}{2x\left(x+5\right)}=0.\)
\(\Leftrightarrow2x^2+15x+25-2x^2=0.\)
\(\Leftrightarrow15x+25=0.\)
\(\Rightarrow x=\frac{-5}{3}\)
học tốt
\(x^3+2x^2+x=0\)
\(\Leftrightarrow x\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy tập nghiệm S = {0;-1}
\(x^3+2x^2+x=0\)
\(\Leftrightarrow x\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;-1\right\}\)
a) Ta có: x4 - x3 + 2x2 - x + 1 = 0
=> (x4 + 2x2 + 1) - x(x2 + 1) = 0
=> (x2 + 1)2 - x(x2 + 1) = 0
=> (x2 + 1)(x2 - x + 1) = 0
=> (x2 + 1)[(x2 - x + 1/4) + 3/4] = 0
=> (x2+ 1 )[(x - 1/2)2 + 3/4] = 0
=> pt vô nghiệm (vì x2 + 1 > 0; (x - 1/2)2 + 3/4 > 0)
b) Ta có: x3 + 2x2 - 7x + 4 = 0
=> (x3 - x) + (2x2 - 6x + 4) = 0
=> x(x2 - 1) + 2(x2 - 3x + 2) = 0
=> x(x - 1)(x + 1) + 2(x2 - 2x - x + 2) = 0
=> x(x - 1)(x + 1) + 2(x - 2)(x - 1) = 0
=> (x - 1)(x2 + x + 2x - 4) = 0
=> (x - 1)(x2 + 3x - 4) = 0
=> (x - 1)(x2 + 4x - x - 4) = 0
=> (x - 1)(x + 4)(x - 1) = 0
=> (x - 1)2(x + 4) = 0
=> \(\orbr{\begin{cases}x-1=0\\x+4=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)
a) \(x^4-x^3+2x^2-x+1=0\)
\(\Leftrightarrow\left(x^4+2x^2+1\right)-x\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)^2-x\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2+1-x\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\right]=0\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]=0\)
Ta có: \(\hept{\begin{cases}x^2+1>0\forall x\\\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\end{cases}}\)
\(\Rightarrow\)Phương trình vô nghiệm
Vậy không có giá trị x thỏa mãn đề bài
b) \(x^3+2x^2-7x+4=0\)
\(\Leftrightarrow\left(x^3-x\right)+\left(2x^2-6x+4\right)=0\)
\(\Leftrightarrow x\left(x^2-1\right)+2\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)+2\left(x^2-x-2x+2\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)+2\left[x\left(x-1\right)-2\left(x-1\right)\right]=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)+2\left(x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x+1\right)+2\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2+x+2x-4\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2+3x-4\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2+4x-x-4\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x+4\right)-\left(x+4\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=-4\end{cases}}}\)
Vậy x=1; x=-4
x2 - 4y2 =1
<=>x-2y=1
hoặcx+2y=1
<=>x=1+2y
hoăcx=1-2y=>1+2y=1-2y
<=>4y = 0 <=> y=0=>x=1
a) \(x^3+x^2+2x-16\ge0\)
\(\Leftrightarrow x^3-2x^2+3x^2-6x+8x-16\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+8\right)\ge0\)
Mà \(x^2+3x+8>x^2+3x+2,25=\left(x+1,5\right)^2\ge0\)
Cho nên \(x-2\ge0\)
\(\Leftrightarrow x\ge2\)
a,x^3-2x^2+3x^2-6x+8x-16>=0
(x^2+3x+8)(x-2)>=0
x^2+3x+8>0
=> để lớn hơn hoac bang 0 thì x-2 phải>=0
=>x>=2
b,hình như là vô nghiệm ko chắc chắn lắm
2x+1=0 hoặc 3-x=0 hoặc 4-2x=0
=> x=-1/2 hoặc x=3 hoặc x=2
học tốt
\(x^4-3x^3+2x^2-9x+9=0\)
\(\Leftrightarrow\left(x^4-2x^3-9x\right)-\left(x^3-2x^2-9\right)=0\)
\(\Leftrightarrow x\left(x^3-2x^2-9\right)-\left(x^3-2x^2-9\right)=0\)
\(\Leftrightarrow\left(x^3-2x^2-9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[\left(x^3+x^2+3x\right)-\left(3x^2+3x+9\right)\right]\left(x-1\right)=0\)
\(\Leftrightarrow\left[x\left(x^2+x+3\right)-3\left(x^2+x+3\right)\right]\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2+x+3\right)\left(x-3\right)\left(x-1\right)=0\)(1)
Ta thấy \(x^2+x+3=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+3\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0;\forall x\)
\(\Rightarrow\left(1\right)\)xảy ra \(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Vậy \(x\in\left\{3;1\right\}\)
\(x^4-3x^3+2x^2-9x+9=0\)
\(\Leftrightarrow\left(x^4+9+6x^2\right)-\left(3x^3+9x\right)-4x^2=0\)
\(\Leftrightarrow\left(x^2+3\right)^2-3x\left(x^2+3\right)-4x^2=0\)
\(\Leftrightarrow\left(x^2+3\right)^2-4x\left(x^2+3\right)+x\left(x^2+3\right)-4x^2=0\)
\(\Leftrightarrow\left(x^2+3\right)\left(x^2+3-4x\right)+x\left(x^2+3-4x\right)=0\)
\(\Leftrightarrow\left(x^2+3-4x\right)\left(x^2+3+x\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\right]=0\)
Vì \(\left(x^2+\frac{1}{2}\right)^2+\frac{11}{4}>0\)
\(\Rightarrow\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
ko vt lại đề
<=>(x+2)(x-2)-(x-2)(3-2x)=0
<=>(x-2)(5-x)=0
=>x-2=0 hoặc 5-x=0
=> x=2 hoặc x=5
Hok tốt
\(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=\)\(0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)-\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\3x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{-1}{3}\end{cases}}}\)
\(=>\frac{8}{2x^2-6x+2}-\frac{3}{2x^2-6x+2}=-1\)
\(=>\frac{5}{2x^2-6x+2}=-1\)
\(=>2x^2-6x+2=-5\)
\(=>2x^2-6x=-7\)
\(=>x.\left(2x-6\right)=-7\)
\(=>2x-6=-\frac{7}{x}\)
\(=>2x=\frac{-7+6x}{x}\)
\(=>3x=-7+6x\)
\(=>-7=-3x\)
\(=>x=\frac{-7}{-3}=\frac{7}{3}\)
E ms lớp 7 nên giải hơi dài thông cảm ạ :>
\(x^4-2x^2-100x-624=0\\ \Rightarrow\left(x^4+4x^3\right)-\left(4x^3+16x^2\right)+\left(14x^2+56x\right)-\left(156x-624\right)=0\\ \Rightarrow x^3\left(x+4\right)-4x^2\left(x+4\right)+14x\left(x+4\right)-156\left(x+4\right)=0\\ \Rightarrow\left(x^3-4x^2+14x-156\right)\left(x+4\right)=0\\ \Rightarrow\left[\left(x^3-6x^2\right)+\left(2x^2-12x\right)+\left(26x-156\right)\right]\left(x+4\right)=0\\ \Rightarrow\left[x^2\left(x-6\right)+2x\left(x-6\right)+26\left(x-6\right)\right]\left(x+4\right)=0\)
\(\Rightarrow\left(x^2+2x+26\right)\left(x-6\right)\left(x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2+25=0\left(vô.lí\right)\\x=6\\x=-4\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{-4;6\right\}\)