K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\sqrt{4\cdot\left(1-x\right)^2}=6\)

\(\Leftrightarrow2\left|x-1\right|=6\)

\(\Leftrightarrow\left|x-1\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)

14 tháng 8 2021

\(\Leftrightarrow\left|2\left(1-x\right)\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2\left(1-x\right)=6\\2\left(1-x\right)=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}1-x=3\\1-x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=4\end{matrix}\right.\)

11 tháng 8 2017

câu 2 có nghiệm x=2 , liên hợp đi 

17 tháng 8 2016
Cmt rồi nha
17 tháng 8 2016

bài này ai kamf chua 

9 tháng 7 2017

Đk: tự xác định

\(pt\Leftrightarrow\sqrt{x+3}-\left(\frac{1}{3}x+1\right)+\sqrt{6-x}-\left(-\frac{1}{3}x+2\right)-\sqrt{\left(x+3\right)\left(6-x\right)}=0\)

\(\Leftrightarrow\frac{x+3-\left(\frac{1}{3}x+1\right)^2}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{6-x-\left(-\frac{1}{3}x+2\right)^2}{\sqrt{6-x}-\frac{1}{3}x+2}-\sqrt{\left(x+3\right)\left(6-x\right)}=0\)

\(\Leftrightarrow\frac{-\frac{1}{9}\left(x+3\right)\left(x-6\right)}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{-\frac{1}{9}\left(x+3\right)\left(x-6\right)}{\sqrt{6-x}-\frac{1}{3}x+2}-\frac{\left(x+3\right)\left(x-6\right)}{\sqrt{-\left(x+3\right)\left(x-6\right)}}=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-6\right)\left(\frac{-\frac{1}{9}}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{-\frac{1}{9}}{\sqrt{6-x}-\frac{1}{3}x+2}-\frac{1}{\sqrt{-\left(x+3\right)\left(x-6\right)}}\right)=0\)

Dễ thấy:\(\frac{-\frac{1}{9}}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{-\frac{1}{9}}{\sqrt{6-x}-\frac{1}{3}x+2}-\frac{1}{\sqrt{-\left(x+3\right)\left(x-6\right)}}< 0\)

\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-6=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-3\\x=6\end{cases}}\)

20 tháng 7 2017

\(pt\Leftrightarrow\sqrt{x}\left(\sqrt{x-1}+\sqrt{x+2}-2\sqrt{x}\right)=0\)

27 tháng 8 2017

Chép lại đề -_- Nghiệm nát như thế liên cái vào mắt =))

27 tháng 8 2017

\(2\left(x-4\right)\sqrt{x-2}+\left(x-2\right)\sqrt{x+1}+2\left(x-3\right)=0\)

ĐK:\(x\ge2\)

\(\Leftrightarrow2\left(x-4\right)\left(\sqrt{x-2}-1\right)+\left(x-2\right)\left(\sqrt{x+1}-2\right)-2\left(x-3\right)=0\)

\(\Leftrightarrow2\left(x-4\right)\frac{x-2-1}{\sqrt{x-2}+1}+\left(x-2\right)\frac{x+1-4}{\sqrt{x+1}+2}-2\left(x-3\right)=0\)

\(\Leftrightarrow2\left(x-4\right)\frac{x-3}{\sqrt{x-2}+1}+\left(x-2\right)\frac{x-3}{\sqrt{x+1}+2}-2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{2\left(x-4\right)}{\sqrt{x-2}+1}+\frac{x-2}{\sqrt{x+1}+2}-2\right)=0\)

Suy ra x=3

14 tháng 8 2021

\(\sqrt{x^2-x+16}=4\)

\(\Rightarrow x^2-x+16=16\\ \Rightarrow x^2-x=0\\ \Rightarrow x\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Ta có: \(\sqrt{x^2-x+16}=4\)

\(\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

1 tháng 2 2020

\(\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)\(\Leftrightarrow\sqrt{x^2+x+\frac{1}{4}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)\(\Leftrightarrow x+\frac{1}{2}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\Leftrightarrow2x+1=2x^3+x^2+2x+1\)\(\Leftrightarrow2x^3+x^2=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\)

2 tháng 2 2020

\(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\left(1\right)\)

\(\left(1\right)\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)

\(x^2+1\ge1\forall x\Rightarrow2x+1\ge0!2x+1!=2x+1\)

\(\left(1\right)\Leftrightarrow\sqrt{x^2+x+\frac{1}{4}}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)

\(\left(1\right)\Leftrightarrow x+\frac{1}{2}=\frac{1}{2}\left(2x+1\right)\left(x^2+1\right)\)

\(\left(1\right)\Leftrightarrow2x+1=\left(2x+1\right)\left(x^2+1\right)\Leftrightarrow\left(2x+1\right).\left(1-\left(x^2+1\right)\right)=0\)

\(\hept{\begin{cases}2x+1=0\\-x^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\x=0\end{cases}}}\)

Chúc bạn học tốt !!!