\(\left(\sqrt{x+1}-\sqrt{x-2}\right).\left(1+\sqrt{x^2-x-2}\right)=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: \(-1\le x\le1\)

Xét \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left[\left(1+x\right)+\left(1-x\right)+\sqrt{\left(1+x\right)\left(1-x\right)}\right]\)

\(=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)\)

Khi đó phương trình đề trở thành:

\(\sqrt{1+\sqrt{1-x}}\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)=\frac{2+\sqrt{1-x^2}}{3}\)

Vì \(2+\sqrt{1-x^2}>0\)nên ta có thể chia 2 vế cho \(2+\sqrt{1-x^2}\):

\(\Rightarrow\sqrt{1+\sqrt{1-x^2}}\left(\sqrt{1+x}-\sqrt{1-x}\right)=\frac{1}{\sqrt{3}}\),Bình phương 2 vế:

\(\Rightarrow\left(1+\sqrt{1-x^2}\right)\left[\left(1+x\right)+\left(1-x\right)-2\sqrt{\left(1+x\right)\left(1-x\right)}\right]=\frac{1}{3}\)

\(\Leftrightarrow\left(1+\sqrt{1-x^2}\right)\left(2-2\sqrt{1-x^2}\right)=\frac{1}{3}\Leftrightarrow2\left(1+\sqrt{1-x^2}\right)\left(1-\sqrt{1-x^2}\right)=\frac{1}{3}\)\(\Leftrightarrow1-\left(1-x^2\right)=\frac{1}{3}\Leftrightarrow x^2=\frac{1}{6}\Leftrightarrow x=\pm\frac{1}{\sqrt{6}}\)

Ta xét phương trình đề: vế phải luôn không âm vì vậy vế trái phải không âm 

Khi đó \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\ge0\Leftrightarrow1+x\ge1-x\Leftrightarrow x\ge0\)

Vậy ta chỉ nhận nghiệm duy nhất là \(x=\frac{1}{\sqrt{6}}\)

31 tháng 8 2018

Sorry nha nhưng em mới học lớp 7 thôi à ~~

4 tháng 2 2018

\(x^3+\left(x+1\right)\sqrt{x+1}+2\sqrt{2}=\left(x+\sqrt{x+1}+\sqrt{2}\right)^3\)   ( 1 )

\(ĐKXĐ:x\ge-1\)

Đặt: \(y=\sqrt{x+1};z=\sqrt{2}\)khi đó ( 1 ) có dạng \(x^3+y^3+z^3=\left(x+y+z\right)^3\)( 2 )

Chứng minh được ( 2 ) \(\Leftrightarrow\left(x+y\right)\left(x+z\right)\left(y+z\right)=0\)

\(x+y=0\Leftrightarrow x+\sqrt{x+1}=0\Leftrightarrow\sqrt{x+1}=-x\Rightarrow x=\frac{1-\sqrt{5}}{2}\)( thoản mãn )

\(x+z=0\Leftrightarrow x+\sqrt{2}=0\Leftrightarrow x=-\sqrt{2}\)( không thỏa mãn )

\(y+z=0\Leftrightarrow\sqrt{x+1}+\sqrt{2}=0\)( vô nghiệm )

Vậy pt có nghiêm duy nhất là : \(\frac{1-\sqrt{5}}{2}\)

đặt \(\sqrt{2x-x^2}=a\)

phương trình trở thành:

\(\sqrt{1+a}+\sqrt{1-a}=2\left(1-a^2\right)^2\left(1-2a^2\right)\)

đến đây thì khai triển đi

22 tháng 8 2017

1/ Đặt  \(\hept{\begin{cases}\sqrt{x+1}=a\\\sqrt{x}=b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a-\frac{a}{b}-1=0\\a^2-b^2=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}ab=a+b\\\left(a+b\right)\left(a-b\right)=1\end{cases}}\)

Tới đây b làm nốt nhé

6 tháng 8 2016

\(S=\frac{-1+\sqrt{2}}{2-1}+\frac{-\sqrt{2}+\sqrt{3}}{3-2}+...+\frac{-\sqrt{99}+\sqrt{100}}{100-99}\)

\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-....-\sqrt{99}+\sqrt{100}\)

\(=-1+\sqrt{100}\)

\(\hept{\begin{cases}a=\left(x^2-x+1\right)^2\\b=x^2\end{cases}}\)

\(a^2-\left(b+1\right)a+b=0\Leftrightarrow\left(a-1\right)\left(a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=b\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x^2-x+1\right)^2=1\\\left(x^2-x+1\right)^2=x^2\end{cases}}\)(easy)

16 tháng 8 2017

d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)

ĐK:\(x\ge-3\)

\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)

\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)

\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)

\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)

16 tháng 8 2017

d)\(2x^2+4x=\sqrt{\frac{x+3}{2}}\)

ĐK:\(x\ge-3\)

\(\Leftrightarrow4x^4+16x^3+16x^2=\frac{x+3}{2}\)

\(\Leftrightarrow\frac{8x^4+32x^3+32x^2-x-3}{2}=0\)

\(\Leftrightarrow8x^4+32x^3+32x^2-x-3=0\)

\(\Leftrightarrow\left(2x^2+3x-1\right)\left(4x^2+10x+3\right)=0\)