Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/hoi-dap/question/129065.html
tham khảo ở đó bn nha
chúc hok tốt
Đây có phải đề bài của bạn không:
\(\frac{6}{x-5}+x+\frac{2}{x+8}=\frac{18}{\left(x-5\right)\left(8-x\right)-1}\)
Ta cm BĐT :
\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
<=> \(3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ac\ge0\)
<=> \(2a^2-2ab+2b^2-2bc+2c^2-2ac\ge0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng với mọi a ; b; c )
Dấu '' = '' BĐT xảy ra khi a =b =c
(*) ÁP dụng BĐT với \(a=x^2;b=x;c=1\) ta có
( VẾ trái ) = \(\left(x^2+x+1\right)^2\le3\left[\left(x^2\right)^2+x^2+1\right]=3\left(x^4+X^2+1\right)=\left(vế\right)phải\)
Dấu ' = '' xảy ra khi \(x^2=x=1\Leftrightarrow x=1\)
Vậy pt có n* duy nhất là 1
\(\Leftrightarrow x\left(\frac{1}{x-3}-\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-6}\right)=0\)
\(\Leftrightarrow x\left(\frac{1}{x-3}-\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-6}\right)=0\)
\(\Leftrightarrow x\left[\frac{x-6+x-3}{\left(x-3\right)\left(x-6\right)}-\left(\frac{x-4+x-5}{\left(x-5\right)\left(x-4\right)}\right)\right]=0\)
\(\Leftrightarrow x\left(\frac{2x-9}{x^2-9x+18}-\frac{2x-9}{x^2-9x+20}\right)=0\)
\(\Leftrightarrow x\left(2x-9\right)\left(\frac{1}{x^2-9x+18}-\frac{1}{x^2-9x+20}\right)=0\) Vì \(\frac{1}{x^2-9x+18}-\frac{1}{x^2-9x+20}\ne0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x-9=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{9}{2}\end{cases}}\)
#Hok tốt
a/ \(\orbr{\begin{cases}x-2=0\\2x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{5}{2}\end{cases}}\)
\(a,\left(x-2\right)\left(2x-5\right)=0.\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\2x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\2x=5\Leftrightarrow x=\frac{5}{2}\end{cases}}}\)
Vậy ....
\(b,\left(0,2x-3\right)\left(0,5x-8\right)=0\left(\text{Mạo muội sửa đề nha 0,5 thành 0,5x}\right)\)
\(\Leftrightarrow\orbr{\begin{cases}0,2x-3=0\\0,5x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}0,2x=3\\0,5x=8\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=15\\x=16\end{cases}}\)
Vậy ... ( có j sai thì bỏ qua cho)
\(c,2x\left(x-6\right)+3\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=6\\2x=-3\Leftrightarrow x=-\frac{3}{2}\end{cases}}}\)
Vậy ...
\(d,\left(x-1\right)\left(2x-4\right)\left(3x-9\right)=0\)
\(\Leftrightarrow2.3\left(x-1\right)\left(x-2\right)\left(x-3\right)=0\)
( ko có ngoặc vuông 3 cái nên mk trình bày kiểu này)
+ TH1:
x-1=0 <=> x= 1
+ TH2:
x-2=0 <=> x=2
+TH3:
x-3 = 0 <=> x = 3
Đặt : x+3 = a
=> x+5 = a+2
pt <=> a^4+(a+2)^4 = 16
<=> a^4+a^4+8a^3+24a^2+32a+16 = 16
<=> 2a^4+8a^3+24a^2+32a = 0
<=> a^4+4a^3+12a^2+16a = 0
<=> a.(a^3+4a^2+12a+16) = 0
<=> a.[(a^3+2a^2)+(2a^4+4a)+(8a+16)] = 0
<=> a.(a+2).(a^2+2a+8) = 0
<=> a.(a+2) = 0 ( vì a^2+2a+8 > 0 )
<=> a=0 hoặc a+2=0
<=> a=0 hoặc a=-2
<=> x+3=0 hoặc x+3=-2
<=> x=-3 hoặc x=-5
Vậy ..............
Tk mk nha
Ta có: \(\left(x+3\right)^4+\left(x+5\right)^4=16\left(1\right)\)
Đặt x + 4 = y thì phương trình (1) trở thành:
\(\left(y-1\right)^4+\left(y+1\right)^4=16\)
\(\Leftrightarrow y^4-4y^3+6y^2-4y+1+y^4+4y^3+6y^2+4y+1=16\)
\(\Leftrightarrow2y^4+12y^2+2=16\)
\(\Leftrightarrow2\left(y^4+6y^2+1\right)=16\)
\(\Leftrightarrow y^4+6y^2+1=8\)
\(\Leftrightarrow y^4+6y^2+1-8=0\)
\(\Leftrightarrow y^4+7y^2-y^2-7=0\)
\(\Leftrightarrow y^2\left(y^2-1\right)-7\left(y^2-1\right)=0\)
\(\Leftrightarrow\left(y^2-7\right)\left(y^2-1\right)=0\)
Vì \(y^2-7\ne0\)
\(\Rightarrow y^2-1=0\Rightarrow y^2=1\Rightarrow y=\pm1\)
Với y = 1 => x + 4 = y => x + 4 = 1 => x = -3
Với y = -1 => x + 4 = y => x + 4 = -1 => x = -5
Vậy x = {-3;-5}