K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2017

Điều kiện xác định bạn tự tìm

a) \(\sqrt{x^2-4x+3}=x-2\Leftrightarrow\)\(\left(\sqrt{x^2-4x+3}\right)^2=\left(x-2\right)^2\)

\(\Leftrightarrow x^2-4x+3=x^2-4x+4\Leftrightarrow0=1\) vô lý

pt vô nghiệm

b) \(\sqrt{x^2-1}-\left(x^2-1\right)=0\Leftrightarrow\sqrt{x^2-1}\left(1-\sqrt{x^2-1}\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-1}=0\\1-\sqrt{x^2-1}=0\end{cases}}\)

<=>\(\orbr{\begin{cases}\\\end{cases}}\begin{matrix}x=\pm1\\x=\pm\sqrt{2}\end{matrix}\)

c)\(\sqrt{x^2-4}-\left(x-2\right)=0\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\left(x-2\right)=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x-2}\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-\sqrt{x-2}=0\end{cases}}\)

<=>x=2 còn cái kia vô nghiệm

bạn tự trình bày chi tiết nhé

20 tháng 7 2017

a) bình phương -> rút gọn-> giải nghiệm

b,c) chuyển những phần tử không có căn sang vế phải->bình phương->rút gọn->tìm nghiệm

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

4 tháng 10 2018

\(\sqrt{x-4\sqrt{x}+4}+\sqrt{x+6\sqrt{x}+9}=5\)  ĐKXĐ : \(x\ge0\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}+3\right)^2}=5\)

\(\Leftrightarrow\left|\sqrt{x}-2\right|+\left|\sqrt{x}+3\right|=5\)

\(\Leftrightarrow\left|\sqrt{x}-2\right|+\sqrt{x}+3=5\)

\(\Leftrightarrow\left|\sqrt{x}-2\right|=2-\sqrt{x}\) ĐK \(x\le4\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=2-\sqrt{x}\\\sqrt{x}-2=\sqrt{x}-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\\text{vô số n}_o\end{cases}}}\)

Vậy \(S=\left\{x\in R/0\le x\le4\right\}\)

4 tháng 10 2018

\(\sqrt{x-4\sqrt{x}+4}+\sqrt{x+6\sqrt{x}+9}=5\)

\(\Leftrightarrow\)\(\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}+3\right)^2}=5\)

\(\Leftrightarrow\)\(\left|\sqrt{x}-2\right|+\left|\sqrt{x}+3\right|=0\)

+) Với \(\hept{\begin{cases}\sqrt{x}-2\ge0\\\sqrt{x}+3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x}\ge2\\\sqrt{x}\ge-3\end{cases}\Leftrightarrow}}\sqrt{x}\ge2\Leftrightarrow x\ge4\) ta có : 

\(\sqrt{x}-2+\sqrt{x}+3=5\)

\(\Leftrightarrow\)\(2\sqrt{x}=4\)

\(\Leftrightarrow\)\(\sqrt{x}=2\)

\(\Leftrightarrow\)\(x=4\) ( thỏa mãn ) 

+) Với \(\hept{\begin{cases}\sqrt{x}-2< 0\\\sqrt{x}+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x}< 2\\\sqrt{x}< -3\end{cases}\Leftrightarrow}x< 4}\) ta có : 

\(2-\sqrt{x}+3-\sqrt{x}=5\)

\(\Leftrightarrow\)\(-2\sqrt{x}=0\)

\(\Leftrightarrow\)\(\sqrt{x}=0\)

\(\Leftrightarrow\)\(x=0\) ( thỏa mãn ) 

Vậy \(x=4\) hoặc \(x=0\)

Chúc bạn học tốt ~ 

PS : mới lớp 8 sai thì thông cảm.. 

13 tháng 11 2016

6/ Đặt \(\hept{\begin{cases}\sqrt[4]{x}=a\\\sqrt[4]{2-x}=b\end{cases}}\)

\(\Rightarrow b^4+a^4=2\)

Từ đó ta có: a + b = 2

Ta có: \(a^4+b^2\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(a+b\right)^4}{8}=\frac{16}{8}=2\)

Dấu = xảy ra khi a = b = 1

=> x = 1

11 tháng 8 2017

câu 2 có nghiệm x=2 , liên hợp đi 

19 tháng 7 2017

bình phương hai vế rồi ra đó bạn

\(\sqrt{x^2-x-6}=\sqrt{x-3}\)

Tự xét điều kiện nha

\(\Leftrightarrow x^2-x-6=x-3\)

\(\Leftrightarrow x^2-2x-3=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

\(\sqrt{x^2-x}=\sqrt{3x-5}\)

\(\Leftrightarrow x^2-x=3x-5\)

\(\Leftrightarrow x^2-4x+5=0\)

vô nghiệm

20 tháng 7 2017

k đi rồi mình giải cho