Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có:
\(x^3-2x^2+2=x^2-2x+2=0\)
\(\Rightarrow2x^2=2x\)
\(\Rightarrow x^2=x\)
\(\Rightarrow x^2-x=0\)
\(\Rightarrow x\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Mà với cả x =0 hay x = -1 thì \(x^3-2x^2+2=x^2-2x+2\ne0\).
Do đó không tồn tại x thỏa mãn.
\(\left\{{}\begin{matrix}2x-y=3\\x^2+y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3\\x^2+2x-3=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3\\\left(x+1\right)^2=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3\\\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\Rightarrow y=1\\x=-4\Rightarrow y=-11\end{matrix}\right.\)
\(\Leftrightarrow2x^3-3x^2+6x+2x^2-3x+6=0\)
\(\Leftrightarrow x\left(2x^2-3x+6\right)+2x^2-3x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2-3x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x^2-3x+6=0\left(vn\right)\end{matrix}\right.\)
TA CÓ:
\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1+6\sqrt{x-1}+9}=5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=5\)
\(\Leftrightarrow\sqrt{x-1}-2+\sqrt{x-1}-3=5\Leftrightarrow2\sqrt{x-1}=10\Leftrightarrow\sqrt{x-1}=5\)
\(\Leftrightarrow x-1=25\Leftrightarrow x=26\)
ĐKXĐ: \(x\ge1\)
PT (=) \(\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}+3\right)^2}=5\)
(=) \(\sqrt{x-1}-2+\sqrt{x-1}+3=5\) (=) \(2\sqrt{x-1}=4\)(=) \(\sqrt{x-1}=2\)(=) X = 5 (nhận)
Lời giải:
Để pt có hai nghiệm $x_1,x_2$ thì:
\(\Delta'=4^2-6m>0\Leftrightarrow m< \frac{8}{3}\)
Áp dụng định lý Viete cho pt bậc 2 thì:
\(\left\{\begin{matrix} x_1+x_2=-4\\ x_1x_2=\frac{3m}{2}\end{matrix}\right.\)
Khi đó:
\(x_1^2+x_2^2=15\)
\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2=15\)
\(\Leftrightarrow (-4)^2-3m=15\Leftrightarrow m=\frac{1}{3}\) (thỏa mãn)
Vậy \(m=\frac{1}{3}\)
Ta có: \(\Delta'=\)42 -2.3m =16-6m. Để phướng trình có 2 nghiệm, \(\Delta'\ge0\)
<=> 16-6m \(\ge\)0 <=> -6m\(\ge\)-16 <=> m\(\le\)\(\dfrac{8}{3}\)
Ta có : x12 +x22=15 <=> x12+2x1x2+x22-2x1x2= (x1+x2)2- 2x1x2
Theo hệ thức Vi-ét ta có: x1+x2=-4 ; x1x2=\(\dfrac{3m}{2}\)
=> \(\left(-4\right)^2-2.\dfrac{3m}{2}\)=15 <=> 16-3m=15 <=> -3m=-1 <=> m=\(\dfrac{1}{3}\) (thỏa mãn)
Vậy m= \(\dfrac{1}{3}\) thỏa mãn yêu cầu đề bài
\(\left\{{}\begin{matrix}x^2+y^2+xy+1=4y\left(1\right)\\y\left(x+y\right)=2x^2+7y+2\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow xy+y^2=2x^2+7y+2\left(3\right)\)
Thay \(\left(3\right)\) vào \(\left(1\right)\) ta có: \(\left(1\right)\Leftrightarrow x^2+2x^2+7y+2+1-4y=0\\ \Leftrightarrow x^2+y+1=0\\ \Leftrightarrow x^2+1=-y\)
Thay \(\left(4\right)\) vào \(\left(1\right)\): \(y^2+xy-5y=0\Leftrightarrow y\left(y+x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}y=0\\y=5-x\end{matrix}\right.\)
Với y=0 thì \(x^2+1=0\) vô nghiệm
Với y=5-x thì \(x^2+1=x-5\Leftrightarrow x^2-x+6\) vô nghiệm
Vậy hpt vô nghiệm
\(x^3-2x^2-2x+3=0\)
\(\Leftrightarrow x^3-x^2-x^2+x-3x+3=0\)
\(\Leftrightarrow x^2\left(x-1\right)-x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-x-3\right)\left(x-1\right)=0\)
...