K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2019

x4-4x3-9x2+36x = 0

⇔ x (x3 - 4x2 - 9x +36 ) = 0

\(\begin{cases} x = 0 \\ x^3 -4x^2 -9x +36 = 0 (1) \end{cases}\)

(1) ⇔ x3 - 4x2 - 9x +36 = 0

x1 = -3 (Nhận)

x2 = 4 (Nhận)

Vậy S = {0;-3;4}

21 tháng 6 2017

tôi cx ko chưa chắc chắn câu này nên chưa giải đc đâu

nha pn

21 tháng 6 2017

\(x^6+6x^4-36x^3+6x^2+1=0\)

\(\Leftrightarrow\left(x^2-3x+1\right)\left(x^4+3x^3+14x^2+3x+1\right)=0\)

Dễ thấy \(x^4+3x^3+14x^2+3x+1>0\)

\(\Rightarrow x^2-3x+1=0\)

\(\Leftrightarrow x=\dfrac{3\pm\sqrt{5}}{2}\)

19 tháng 7 2019

gợi ý nhé 

a (=)  2x.( 4x2+1) = (3x+2). căn(3x+1)          ( x>=-1/3)

 đặt 2x =a 

     căn (3x+1) = b    (b>=0)

  ta có hpt sau            a.(a2 +1)=b.(b2+1)    (1)

                                  3a-2b2= -2                (2)

   giải (1)   (=) a3 + a = b3 + b

                (=) (a-b).(a2+ab+b2+1) = 0 =) a=b  ( vì a2+ab+b2+1>0)

phần còn lại tự giải nhé

b (=)   (x+1).(x2+2x+2)=(x+2) . căn(x+1)         (x>=-1)   

(=) căn (x+1) . [căn(x+1) . (x2+2x+2) -x-2] = 0

=) x=-1

hay  căn(x+1) . (x2+2x+2) -x-2=0 

     cách 1 giải phổ thông ( chuyển vế rồi bình phương)

  cách 2 đặt ẩn phụ và lập hệ

 đặt căn(x+1)=a (a>=0) 

  =) a.[x(a2+1)+2] = a2+1   và a2 - x =1

tự giải nhé

c,tạm thời chưa nghĩ ra 

13 tháng 4 2016

TỪ GT TA CÓ X1=2X2 HOẶC X1=-2X2

VÌ HỆ SỐ  a*c<0 MỌI m THỎA MÃN

THEO HỆ THỨC VIET X1+X2=3

XÉT TRƯỜNG HỢP X1=2X2  \(\Rightarrow X_2=1;X_1=2\Rightarrow-2m^2=2\Rightarrow\) KHÔNG CÓ m

cmtt  VỚI X1=-2X2   m=-3;3

22 tháng 7 2019
https://i.imgur.com/4f7sBVt.jpg
22 tháng 7 2019

Được chưa?

1 tháng 4 2017

Đang làm dở dang mà tự nhiên máy thoát ra. Chép lại oải ghê.

Câu 1: Mình làm mẫu câu a thôi nhé.

a/ \(x^2-2\sqrt{3}x-6=0\)

( a = 1 ; b = -2\(\sqrt{3}\); c = -6 )

\(\Delta=b^2-4ac\)

    \(=\left(-2\sqrt{3}\right)^2-4.1.\left(-6\right)\)

    \(=36>0\)

\(\sqrt{\Delta}=\sqrt{36}=6\)

Pt có 2 nghiệm phân biệt:

\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2\sqrt{3}-6}{2.1}=-3+\sqrt{3}\)

\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2\sqrt{3}+6}{2.1}=3+\sqrt{3}\)

Vậy:..

Câu 2: \(x^2-2\left(2m+1\right)x+4m^2+2=0\)

( a = 1; b = -2(2m+1); c = 4m^2 + 2 )

\(\Delta=b^2-4ac\)

    \(=\left[-2\left(2m+1\right)\right]^2-4.1.\left(4m^2+2\right)\)

     \(=4\left(4m^2+4m+1\right)-16m^2-8\)

     \(=16m^2+16m+4-16m^2-8\)

     \(=16m-4\)

Để pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow16m-4>0\Leftrightarrow m>\frac{1}{4}\)

31 tháng 3 2017

ko hỉu

NV
14 tháng 5 2020

c/

\(x\left(x+3\right)\left(x+1\right)\left(x+2\right)-24=0\)

\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)

Đặt \(x^2+3x=t\)

\(t\left(t+2\right)-24=0\Leftrightarrow t^2+2t-24=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2+3x=4\\x^2+3x=-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+3x-4=0\\x^2+3x+6=0\end{matrix}\right.\)

d/

\(\Leftrightarrow x^4-2x^3+x^2+3x^2-3x-10=0\)

\(\Leftrightarrow\left(x^2-x\right)^2+3\left(x^2-x\right)-10=0\)

Đặt \(x^2-x=t\)

\(t^2+3t-10=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x=2\\x^2-x=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-x-2=0\\x^2-x+5=0\end{matrix}\right.\)

NV
13 tháng 5 2020

a/ ĐKXĐ: ...

Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)

\(2\left(t^2-2\right)-3t+2=0\)

\(\Leftrightarrow2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=2\\x+\frac{1}{x}=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-2x=1=0\\2x^2-x+2=0\end{matrix}\right.\)

b/ Với \(x=0\) ko phải nghiệm

Với \(x\ne0\) chia 2 vế của pt cho \(x^2\)

\(x^2+\frac{1}{x^2}-5x+\frac{5}{x}-8=0\)

\(\Leftrightarrow x^2+\frac{1}{x^2}-2-5\left(x-\frac{1}{x}\right)-6=0\)

Đặt \(x-\frac{1}{x}=t\Rightarrow t^2=x^2+\frac{1}{x^2}-2\)

\(t^2-5t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-\frac{1}{x}=-1\\x-\frac{1}{x}=6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x-1=0\\x^2-6x-1=0\end{matrix}\right.\)