Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+5x^3-8x-40=0\)
\(\Leftrightarrow x^3\left(x+5\right)-8\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^3-8\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)\left(x+5\right)=0\)
Ta có : \(x^2+2x+4=x^2+2x+1+3=\left(x+1\right)^2+3\ge3\)\(\Rightarrow\left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
\(x^4+5x^3-8x-40=0\)
\(\Leftrightarrow x^4+3x^3-10x^2+2x^3+6x^2-20x+4x^2+12x-40=0\)
\(\Leftrightarrow x^2\left(x^2+3x-10\right)+2x\left(x^2+3x-10\right)+4\left(x^2+3x-10\right)=0\)
\(\Leftrightarrow\left(x^2+3x-10\right)\left(x^2+2x+4\right)=0\)
\(\Leftrightarrow\left(x^2-2x+5x-10\right)\left(x^2+2x+4\right)=0\)
\(\Leftrightarrow\left[x\left(x-2\right)+5\left(x-2\right)\right]\left(x^2+2x+4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+5\right)\left(x^2+2x+4\right)=0\)
Dễ thấy: \(x^2+2x+4=x^2+2x+1+3=\left(x+1\right)^2+3>0\) (vô nghiệm)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
3/(x^2-13x+40)+2/(x^2-8x+15)+1/(x^2-5x+6)+6/5+0
3/(x-8)(x-5)+2/(x-5)(x-3)+1/(x-3)(x-2)+6/5=0
1/(x-8)-1/(x-5)+1/(x-5)-1/(x-3)+1/(x-3)-1/(x-2)+6/5=0
1/(x-8)-1/(x-2)+6/5=0
ban tu giai tiep nhan
m^2x+2x=5-3mx
m^2x+3mx+2x=5
x(m^2+3m+2)=5
khi 0x=5 thi pt vo nghiem
m^2+3m+2=0
(m+1)(m+2)=0
m=-1 hoac m=-2
\(a,x\left(x-1\right)\left(x+4\right)\left(x+5\right)=84\)
\(\Leftrightarrow\left[x\left(x+4\right)\right]\left[\left(x-1\right)\left(x+5\right)\right]=84\)
\(\Leftrightarrow\left(x^2+4x\right)\left(x^2+4x-5\right)=84\)
Đặt \(x^2+4x=a\)
Ta có : \(a=x^2+4x+4-4=\left(x+2\right)^2-4\ge-4\)
\(\Rightarrow a\ge-4\)
\(Ta\text{ }co'\text{ }pt:a\left(a-5\right)=84\)
\(\Leftrightarrow a^2-5a-84=0\)
\(\Leftrightarrow\left(a-12\right)\left(a+7\right)=0\)
Mà \(a\ge-4\Rightarrow a=12\)
\(\Rightarrow x^2+4x=12\)
\(\Leftrightarrow\left(x-2\right)\left(x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-6\end{cases}}\)
\(b,x^3-5x^2+8x-4=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
a, \(x^4-6x^3+11x^2-6x+1=0\)
\(\Rightarrow\left(x^2-3x+1\right)^2=0\)
\(\Rightarrow x^2-3x+1=0\)
\(\Rightarrow x=\frac{\pm\sqrt{5}+3}{2}\)
Chúc bạn học tốt
\(x^4-\left(6x^2-2x^2\right)+\left(9x^2-6x+1\right)=0\)
\(x^4-2x^2\left(3x-1\right)+\left(3x-1\right)^2=0\)
\(\left(x^2-3x+1\right)^2=0\)
tự làm
B) \(\left(6x^4-18x^3\right)+\left(13x^{^3}-39x^2\right)+\left(x-3x\right)-\left(2x-6\right)=0\)
\(6x^3\left(x-3\right)+13x^2\left(x-3\right)+x\left(x-3\right)-2\left(x-3\right)=0\)
\(\left(x-3\right)\left(6x^3+13x^2-2\right)=0\)
\(\left(x-3\right)\left(6x^3+12x^2+x^2+2x-x-2\right)\)
\(\left(x-3\right)\left\{6x^2\left(x+2\right)+x\left(x+2\right)-\left(x+2\right)\right\}\)
\(\left(x-3\right)\left(x+2\right)\left(6x^2-x-1\right)\)
\(\left(x-3\right)\left(x+2\right)\left(6x^2-3x+2x-1\right)\)
\(\left(x-3\right)\left(x+2\right)\left(3x\left(2x-1\right)+\left(2x-1\right)\right)\)
\(\left(x-3\right)\left(x+2\right)\left(2x-1\right)\left(3x+1\right)=0\)
câu C nghĩ đã
\(x^4+5x^3-8x-40=0\)
\(\Leftrightarrow x^3\left(x+5\right)-8\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^3-8\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)\left(x+5\right)=0\)
Ta có : \(x^2+2x+4=x^2+2x+1+3=\left(x+1\right)^2+3\ge3\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}}\)
Chúc bạn học tốt !!!
=x4-16+5x(x2-4)+12(x-2)=0
<=>(x-2)[(x2+4)(x+2)+5x(x+2)+12]=0
<=>(x-2)(x3+7x2+14x+20)=0 <=> x=2 hoặc
x3+7x2+14x+20=0 <=>(x+5)(x2+2x+4)=0 <=>x+5=0(x2+2x+4>0) <=>x=-5
vậy x=2;x=-5