K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2021

\(PT\Leftrightarrow x^2-3x+5+\sqrt{x^2-3x+5}=12\)

Đặt \(\sqrt{x^2-3x+5}=a\) \(\left(a>0\right)\)

\(\Rightarrow a^2+a=12\)

\(\Leftrightarrow\left(a-3\right)\left(a+4\right)=0\)

\(\Rightarrow a-3=0\Leftrightarrow a=3\)

\(\Leftrightarrow\sqrt{x^2-3x+5}=3\)

\(\Leftrightarrow x^2-3x+5=9\Leftrightarrow x^2-3x-4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-4\right)=0\)

\(\Leftrightarrow x\in\left\{-1;4\right\}\)

6 tháng 5 2018

TUi lớp 7

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

20 tháng 11 2017

(1)Phương trình đã cho tương đương với:
3x27x+33x25x1=x22x23x+43x2−7x+3−3x2−5x−1=x2−2−x2−3x+4
2x+43x27x+3+3x25x1=3x6x22+x23x+4⇔−2x+43x2−7x+3+3x2−5x−1=3x−6x2−2+x2−3x+4

(x2)(3x22+x23x+4+23x27x+3+3x25x1)=0⇔(x−2)(3x2−2+x2−3x+4+23x2−7x+3+3x2−5x−1)=0
Đến đây thì bạn có thể suy ra nghiệm của phương trình sau cùng là x=2x=2. Kiểm tra lại điều kiện ban đầu để kết luận nghiệm của phương trình đã cho.
(2)đk:23x723≤x≤7

Phương trình đã cho tương đương với:

3x183x2+4+x67x1+(x6)(3x2+x2)3x−183x−2+4+x−67−x−1+(x−6)(3x2+x−2)=0

(x6)(33x2+4+17x1+3x2+x2)⇔(x−6)(33x−2+4+17−x−1+3x2+x−2)=0

x=6⇔x=6

vì với 23x723≤x≤7

thì: (33x2+4+17x1+3x2+x2)(33x−2+4+17−x−1+3x2+x−2)>0

31 tháng 5 2019

a,\(1+\sqrt{3x+1}=3x\)(ĐK:\(x>-\frac{1}{3}\))

\(\Leftrightarrow\sqrt{3x+1}=3x-1\)

\(\Leftrightarrow3x+1=9x^2-6x+1\)

\(\Leftrightarrow9x^2-9x=0\)

\(\Leftrightarrow9x\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=1\left(tm\right)\end{cases}}\)

b,\(\sqrt{2+\sqrt{3x-5}}=\sqrt{x+1}\)(ĐK:\(x>-\frac{5}{3}\))

\(\Leftrightarrow2+\sqrt{3x-5}=x+1\)

\(\Leftrightarrow2+3x-5+2.2\sqrt{3x-5}=x+1\)

\(\Leftrightarrow3x-3-x-1=4\sqrt{3x-5}\)

\(\Leftrightarrow2x-4=4\sqrt{3x-5}\)

\(\Leftrightarrow4x^2-16x+16=48x-80\)

\(\Leftrightarrow4x^2-64x-64=0\)

\(\Delta=64^2-4.\left(-64\right)=4352\)

\(\orbr{\begin{cases}x_1=\frac{64-\sqrt{4352}}{8}=8-2\sqrt{17}\left(tm\right)\\x_2=\frac{64+\sqrt{4352}}{8}=8+2\sqrt{17}\left(tm\right)\end{cases}}\)

c,Cho biểu thức trong căn nhận giá trị 16 mà giải

31 tháng 5 2019

CẢm ơn bạn nhé !

29 tháng 9 2017

\(PT\Leftrightarrow x^2-3x-2+x^2+2x-\sqrt{3x+7}-\sqrt{2-x}\) ĐK

\(\Leftrightarrow"x^2-3x-2"+"x+2""\frac{x^2-3x-2}{x+\sqrt{x-2}}"\)

\(\Leftrightarrow"x^2-3x-2""1+\frac{x+2}{x+\sqrt{2-x}}"\)

P/s: Thay dấu ngoặc đơn thành ngoặc kéo

29 tháng 9 2017

Mk nhầm bn thay ngoặc kép mk làm thành ngoặc đơn nhé

7 tháng 1 2020

ĐK:....

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)

<=> \(\left(\sqrt{3x^2+6x+7}-2\right)+\left(\sqrt{5x^2+10x+21}-4\right)=-1-2x-x^2\)

<=> \(\frac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+7}+2}+\frac{5\left(x+1\right)^2}{\sqrt{5x^2+10x+21}+4}+\left(x+1\right)^2=0\)

<=> \(\left(x+1\right)^2\left(\frac{3}{\sqrt{3x^2+6x+7}+2}+\frac{5}{\sqrt{5x^2+10x+21}+4}+1\right)=0\)

<=> x + 1 = 0 

<=> x = -1. ( đối chiếu điều kiện )

Kết luận.

26 tháng 11 2020

Giải theo cách ngắn gọn nhất nhẹ cậu vì cô Chi đã làm bên dưới rồi

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)

Vì vế trái của phương trình không nhỏ hơn 6 , còn vế phải không lớn hơn 6 . Vậy đẳng thức chỉ xảy ra khi cả 2 vế đều bằng 6

=> x = -1

29 tháng 10 2020

a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)

Áp dụng BĐT Bunhiacopxki ta có:

\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)

Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)

Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)

Dấu '=' xảy ra khi x=2

Do đó VT=VP khi x=2

29 tháng 10 2020

b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:

\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)

\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)

Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:

\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)

Đối chiếu ĐK  của t

\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)