Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(0\le x\le\frac{3}{2}\)
ĐẶT: \(\hept{\begin{cases}\sqrt{x}=a\\\sqrt{3-2x}=b\end{cases}\Rightarrow}a;b\ge0\)
=> \(\hept{\begin{cases}x=a^2\\3-2x=b^2\end{cases}}\)
=> \(2a^2+b^2=3\)
KHI ĐÓ PT BAN ĐẦU SẼ ĐƯỢC: \(9+3ab=7a+5b\)
<=> \(6+3+3ab=7a+5b\) (*)
THAY \(2a^2+b^2=3\)vào PT (*) TA SẼ ĐƯỢC:
=> \(2a^2+b^2+3ab+6=2\left(2a+b\right)+3\left(a+b\right)\)
<=> \(\left(a+b\right)\left(2a+b\right)+6=2\left(2a+b\right)+3\left(a+b\right)\)
<=> \(\left(a+b-2\right)\left(2a+b-3\right)=0\)
<=> \(\orbr{\begin{cases}a+b=2\\2a+b=3\end{cases}}\)
TH1: \(a+b=2\Rightarrow\sqrt{x}+\sqrt{3-2x}=2\)
=> \(x+3-2x+2\sqrt{x\left(3-2x\right)}=4\)
<=> \(2\sqrt{3x-2x^2}=x+1\)
<=> \(4\left(3x-2x^2\right)=x^2+2x+1\)
<=> \(12x-8x^2=x^2+2x+1\)
<=> \(9x^2-10x+1=0\)
<=> \(\left(x-1\right)\left(9x-1\right)=0\)
<=> \(\orbr{\begin{cases}x=1\\x=\frac{1}{9}\end{cases}}\)
=> TA THẤY CÁC GIÁ TRỊ x đều TMĐK.
BẠN TỰ XÉT NỐT TRƯỜNG HỢP 2: \(2a+b=3\Rightarrow2\sqrt{x}+\sqrt{3-2x}=3\) nha
Ta có
\(\left\{{}\begin{matrix}\sqrt{2x^2-4x+3}=\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}=1\\\sqrt{3x^2-6x+7}=\sqrt{3\left(x-1\right)^2+4}\ge\sqrt{4}=2\end{matrix}\right.\) \(\forall x\)
\(\Rightarrow VT=\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}\ge3\) \(\forall x\)
Lại có \(VP=2-x^2+2x=3-\left(x-1\right)^2\le3\) \(\forall x\)
\(\Rightarrow\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(x-1\right)^2+1}=1\\\sqrt{3\left(x-1\right)^2+4}=2\\3-\left(x-1\right)^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy pt có nghiệm duy nhất \(x=1\)
Giải
Đặt A = \(\sqrt{x^2+11x-6}-3\sqrt{x+6}\)
B = \(\sqrt{x^2+3x-2}-3\sqrt{x+2}\)
Theo bài ra ta có A + B = 4 (1)
Mặt khác ta có A2 - B2 = 8x + 32 - 24\(\sqrt{2x-1}\)(2)
Từ (1) ta có A = 4 - B thế vào (2) ta có 16 - 8B + B2 - B2 = 8x + 32 - 24\(\sqrt{2x-1}\)
Hay B + x + 2 - 3\(\sqrt{2x-1}\)= 0\(\Rightarrow\)\(\sqrt{x^2+3x-2}-3\sqrt{x+2}+x+2\) - \(3\sqrt{2x-1}\)\(\Rightarrow\)\(\sqrt{\left(x+2\right)\left(2x-1\right)}\) - \(3\sqrt{2x-1}+\sqrt{x+2}\left(\sqrt{x+2}-3\right)\)= 0
Hay \(\sqrt{2x-1}\left(\sqrt{x+2}-3\right)+\sqrt{x+2}\left(\sqrt{x+2}-3\right)=0\)
\(\Rightarrow\left(\sqrt{x+2}-3\right)\left(\sqrt{2x-1}+\sqrt{x+2}\right)=0\)
\(\Leftrightarrow\sqrt{x+2}-3=0\Leftrightarrow x=7\)
Thử lại x = 7 thỏa mã bài ra. Vậy nghiệm của phương trình la x = 7
Lời giải:
a. ĐKXĐ: $x\geq 0$
$2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28$
$\Leftrightarrow 2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28$
$\Leftrightarrow 13\sqrt{2x}=28$
$\Leftrightarrow \sqrt{2x}=\frac{28}{13}$
$\Leftrightarrow 2x=\frac{784}{169}$
$\Leftrightarrow x=\frac{392}{169}$
b. ĐKXĐ: $x\geq 5$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=2$
$\Leftrightarrow x-5=4$
$\Leftrightarrow x=9$ (tm)
c. ĐKXĐ: $x\geq \frac{2}{3}$ hoặc $x< -1$
PT $\Leftrightarrow \frac{3x-2}{x+1}=9$
$\Rightarrow 3x-2=9(x+1)$
$\Leftrightarrow x=\frac{-11}{6}$ (tm)
\(đk:x\ge\frac{-3}{2}\)
\(\sqrt{8x+13+4\sqrt{2x+3}}+\sqrt{2x+7-4\sqrt{2x+3}}=9\)
\(\Leftrightarrow\sqrt{4\left(2x+3\right)+4\sqrt{2x+3}+1}+\sqrt{2x+3-4\sqrt{2x+3}+4}=9\)
\(\Leftrightarrow\sqrt{\left(2\sqrt{2x+3}+1\right)^2}+\sqrt{\left(\sqrt{2x+3}+2\right)^2}=9\)
\(\Leftrightarrow|2\sqrt{2x+3}+1|+|\sqrt{2x+3}+2|=9\Leftrightarrow3\sqrt{2x+3}=6\Leftrightarrow\sqrt{2x+3}=2\Leftrightarrow2x+3=4\)
\(\Leftrightarrow x=\frac{1}{2}\left(\text{thỏa mãn}\right)\)