Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bình phương 2 vế lên ta được
\(x+2\sqrt{x-1}+x-2\sqrt{x-1}+2\sqrt{x^2-4\left(x-1\right)}=\frac{\left(x+3\right)^2}{4}\)
\(< =>2x+2\sqrt{x^2-4x+1}=\frac{x^2+6x+9}{4}\)
\(< =>2\sqrt{x^2-4x+1}=\frac{x^2-2x+9}{4}\)
\(< =>\sqrt{x^2-4x+1}=\frac{x^2-2x+9}{8}\)
tiếp tục mình phương 2 vế thì sẽ ra
\(b,(\sqrt{6}+\sqrt{2})\left(\sqrt{3}-2\right)\sqrt{\sqrt{3}+2}\)
\(=(\sqrt{2}.\sqrt{3}+\sqrt{2})\left(\sqrt{3}-2\right)\sqrt{\sqrt{3}+2}\)
\(=\sqrt{2}.\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right)\sqrt{\sqrt{3}+2}\)
\(=\sqrt{2}.\sqrt{\sqrt{3}+2}\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right)\)
\(=\sqrt{2\sqrt{3}+4}\left(3+\sqrt{3}-2\sqrt{3}-2\right)\)
\(=\sqrt{\sqrt{3}^2+2\sqrt{3}+1^2}\left(1-\sqrt{3}\right)\)
\(=\sqrt{\left(1+\sqrt{3}\right)^2}\left(1-\sqrt{3}\right)\)
\(=\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)\)
\(=1^2-\sqrt{3}^2\)
\(=1-3=-2\)
a)\(\sqrt{\left(x-1\right)^2}+\sqrt{x^2+4x+4}=3\)
\(pt\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=3\)
\(\Leftrightarrow\left|x-1\right|+\left|x+2\right|=3\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(VT=\left|x-1\right|+\left|-\left(x+2\right)\right|=\left|x-1\right|+\left|-x-2\right|\)
\(\ge\left|x-1+\left(-x\right)-2\right|=3=VP\)
Đẳng thức xảy ra khi \(x=1\)
bài 1:
a:\(\sqrt{\left(\sqrt{3}-2\right)^2}\)+\(\sqrt{\left(1+\sqrt{3}\right)^2}\)
=\(\sqrt{3}-2+1+\sqrt{3}\)
=\(2\sqrt{3}-1\)
b; dài quá mink lười làm thông cảm
bài 2:
\(\sqrt{x^2-2x+1}=7\)
=>\(\sqrt{\left(x-1\right)^2}=7
\)
=>\(\orbr{\begin{cases}x-1=7\\x-1=-7\end{cases}}\)
=>\(\orbr{\begin{cases}x=8\\x=-6\end{cases}}\)
b: \(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
=>\(\sqrt{4\left(x-5\right)}-9\sqrt{x-5}=\sqrt{1-x}\)
\(=2\sqrt{x-5}-9\sqrt{x-5}=\sqrt{1-x}\)
=>\(-7\sqrt{x-5}=\sqrt{1-x}\)
=\(-7.\left(x-5\right)=1-x\)
=>\(-7x+35=1-x\)
=>\(-7x+x=1-35\)
=>\(-6x=-34\)
=>\(x\approx5.667\)
mink sợ câu b bài 2 sai đó bạn
1 a)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
= \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
= \(|2-\sqrt{3}|+|1+\sqrt{3}|\)
= \(2-\sqrt{3}+1+\sqrt{3}\)
= \(2+1\)= \(3\)
b) \(\left(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\right)\cdot\left(3\sqrt{\frac{2}{3}}-\sqrt{12}-\sqrt{6}\right)\)
= \(\left(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{6}{3^2}}-4\sqrt{\frac{6}{2^2}}\right)\cdot\left(3\sqrt{\frac{6}{3^2}}-\sqrt{6}\sqrt{2}-\sqrt{6}\right)\)
= \(\left(\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{6}-\frac{4}{2}\sqrt{6}\right)\cdot\left(\frac{3}{3}\sqrt{6}-\sqrt{6}\cdot\sqrt{2}-\sqrt{6}\right)\)
= \(\left(\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{6}-2\sqrt{6}\right)\cdot\left(\sqrt{6}-\sqrt{6}\cdot\sqrt{2}-\sqrt{6}\right)\)
= \(\left(\sqrt{6}\left(\frac{3}{2}+\frac{2}{3}-2\right)\right)\cdot\left(\sqrt{6}\left(1-\sqrt{2}-1\right)\right)\)
= \(\sqrt{6}\frac{1}{6}\cdot\sqrt{6}\left(-\sqrt{2}\right)\)
= \(\sqrt{6}^2\left(\frac{-\sqrt{2}}{6}\right)\)
= \(6\frac{-\sqrt{2}}{6}\)=\(-\sqrt{2}\)
2 a) \(\sqrt{x^2-2x+1}=7\)
<=> \(\sqrt{x^2-2x\cdot1+1^2}=7\)
<=> \(\sqrt{\left(x-1\right)^2}=7\)
<=> \(|x-1|=7\)
Nếu \(x-1>=0\)=>\(x>=1\)
=> \(|x-1|=x-1\)
\(x-1=7\)<=>\(x=8\)(thỏa)
Nếu \(x-1< 0\)=>\(x< 1\)
=> \(|x-1|=-\left(x-1\right)=1-x\)
\(1-x=7\)<=>\(-x=6\)<=> \(x=-6\)(thỏa)
Vậy x=8 hoặc x=-6
b) \(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
<=> \(\sqrt{4\left(x-5\right)}-3\frac{\sqrt{x-5}}{3}=\sqrt{1-x}\)
<=> \(2\sqrt{x-5}-\sqrt{x-5}=\sqrt{1-x}\)
<=> \(\sqrt{x-5}=\sqrt{1-x}\)
ĐK \(x-5>=0\)<=> \(x=5\)
\(1-x\)<=> \(-x=-1\)<=> \(x=1\)
Ta có \(\sqrt{x-5}=\sqrt{1-x}\)
<=> \(\left(\sqrt{x-5}\right)^2=\left(\sqrt{1-x}\right)^2\)
<=> \(x-5=1-x\)
<=> \(x-x=1+5\)
<=> \(0x=6\)(vô nghiệm)
Vậy phương trình vô nghiệm
Kết bạn với mình nha :)
\(ĐKXĐ:-2\le x\le2\)
Ta có :
\(6+2\sqrt{4-x^2}=3\left(\sqrt{2+x}+\sqrt{2-x}\right)\)
\(\Rightarrow2+\left(2+x\right)+\left(2-x\right)+2\sqrt{2+x}.\sqrt{2-x}=3\left(\sqrt{2+x}+\sqrt{2-x}\right)\)
\(\Rightarrow2+\left(\sqrt{2+x}+\sqrt{2-x}\right)^2=3\left(\sqrt{2+x}+\sqrt{2-x}\right)\)
\(\Rightarrow\left(\sqrt{2+x}+\sqrt{2-x}\right)^2-3\left(\sqrt{2+x}+\sqrt{2-x}\right)+2=0\)
\(\Rightarrow\left(\sqrt{2+x}+\sqrt{2-x}-2\right)\left(\sqrt{2+x}+\sqrt{2-x}-1\right)=0\)
+ ) \(\sqrt{2+x}+\sqrt{2-x}-2=0\)
\(\Rightarrow\sqrt{2+x}+\sqrt{2-x}=2\)
Mà : \(\sqrt{2+x}+\sqrt{2-x}\ge\sqrt{2+x+2-x}=2\)
Dấu " = " xảy ra khi \(\left(2+x\right)\left(2-x\right)=0\Rightarrow x\in\left\{2;-2\right\}\)
+ ) \(\sqrt{2+x}+\sqrt{2-x}-1=0\)
\(\Rightarrow\sqrt{2+x}+\sqrt{2-x}=1\) vô nghiệm vì \(\sqrt{2+x}+\sqrt{2-x}\ge2\)