K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2019

a) \(x^3+x^2+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\Leftrightarrow x+1=0\)( vì x2+1 khác 0 vs mọi x )

<=> x = -1

Vậy phương trình có tập nghiệm S = { - 1 }

b) \(2x^3+3x^2+6x+5=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+x+5\right)=0\)

\(\Leftrightarrow x+1=0\) ( vì \(2x^2+x+5\ne0\) vs mọi x )

<=> x = -1

Vậy phương trình có tập nghiệm S = { - 1 }

c) \(\left(x+1\right)^2\left(x+2\right)+\left(x+1\right)^2\left(x-2\right)=-24\)

\(\Leftrightarrow\left(x+1\right)^2\left(x+2\right)+\left(x+1\right)^2\left(x-2\right)+24=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x+2+x-2\right)+24=0\)

\(\Leftrightarrow\left(x+1\right)^22x+24=0\Leftrightarrow2x\left(x^2+2x+1\right)+24=0\)

\(\Leftrightarrow2x^3+4x^2+2x+24=0\)

\(\Leftrightarrow2\left(x+3\right)\left(x^2-x+3\right)=0\)

\(\Leftrightarrow x+3=0\) ( vì \(x^2-x+3\ne0\) với mọi x )

<=> x = -3

Vậy phương trình có tập nghiệm S = { - 3 }

16 tháng 2 2019

\(x^3^{ }+x^2+x+1\)

\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)\)

3 tháng 1 2018

b.

\(2x^3+3x^2+6x+5=0\\ \Leftrightarrow\left(2x^3+2x^2\right)+\left(x^2+x\right)+\left(5x+5\right)=0\\ \Leftrightarrow2x^2\left(x+1\right)+x\left(x+1\right)+5\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(2x^2+x+5\right)=0\\ \Leftrightarrow x+1=0\\ \Leftrightarrow x=-1\)

25 tháng 6 2019

a) 2x(x-3)+5(x-3)=0

\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy: phương trình đã cho có tập nghiệm S=\(\left\{3;-\frac{5}{2}\right\}\)

\(\left(x-5\right)\left(x-1\right)=2x\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x-5-2x\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)

Vậy............

\(5\left(x+3\right)\left(x-2\right)-3\left(x+5\right)\left(x+2\right)=0\)

\(\Leftrightarrow5\left(x^2+x-6\right)-3\left(x^2+7x+10\right)=0\)

\(\Leftrightarrow2x^2-16x-60=0\)

\(\Leftrightarrow x^2-8x-30=0\)

làm tiếp nhé!!!!!

https://i.imgur.com/u6zkAVa.jpg
14 tháng 2 2020

Bài 3:

a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)

\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)

\(3\ne0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)

b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)

c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)

Chúc bạn học tốt!

a: Sửa đề: \(\left(2x^2-3x-1\right)^2-3\left(2x^2-3x-5\right)-16=0\)

\(\Leftrightarrow\left(2x^2-3x-1\right)^2-3\left(2x^2-3x-1-4\right)-16=0\)

\(\Leftrightarrow\left(2x^2-3x-1\right)^2-3\left(2x^2-3x-1\right)-4=0\)

\(\Leftrightarrow\left(2x^2-3x-1-4\right)\left(2x^2-3x-1+1\right)=0\)

\(\Leftrightarrow\left(2x^2-3x-5\right)\left(2x^2-3x\right)=0\)

\(\Leftrightarrow\left(2x^2-5x+2x-5\right)\cdot x\cdot\left(2x-3\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(x+1\right)x\left(2x-3\right)=0\)

hay \(x\in\left\{\dfrac{5}{2};-1;0;\dfrac{3}{2}\right\}\)

b: \(\Leftrightarrow\left(x^2+x\right)^2+4\left(x^2+x\right)-12=0\)

\(\Leftrightarrow\left(x^2+x+6\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)

hay \(x\in\left\{-2;1\right\}\)

10 tháng 8 2020

a); b) Do tích = 0 

=> Từng thừa số = 0 và ta nhận xét: \(x^2+2;x^2+3>0\)

=> a) \(\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)

và câu b) \(\orbr{\begin{cases}x=\frac{1}{2}\\x=5\end{cases}}\)

10 tháng 8 2020

a; *x-1=0 <=>x=1

    *2x+5=0 <=>x=-2,5

    *x2+2=0 <=> ko có x

b; tương tự a

18 tháng 5 2017

giải đc sao pn dễ mk

19 tháng 5 2017

chẳng ai giải, thôi mình giải vậy!

a) Đặt \(y=x^2+4x+8\),phương trình có dạng:

\(t^2+3x\cdot t+2x^2=0\)

\(\Leftrightarrow t^2+xt+2xt+2x^2=0\)

\(\Leftrightarrow t\left(t+x\right)+2x\left(t+x\right)=0\)

\(\Leftrightarrow\left(2x+t\right)\left(t+x\right)=0\)

\(\Leftrightarrow\left(2x+x^2+4x+8\right)\left(x^2+4x+8+x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)vậy tập nghiệm của phương trình là:S={-2;-4}

b) nhân 2 vế của phương trình với 12 ta được:

\(\left(6x+7\right)^2\left(6x+8\right)\left(6x+6\right)=72\)

Đặt y=6x+7, ta được:\(y^2\left(y+1\right)\left(y-1\right)=72\)

giải tiếp ra ta sẽ được S={-2/3;-5/3}

c) \(\left(x-2\right)^4+\left(x-6\right)^4=82\)

S={3;5}

d)s={1}

e) S={1;-2;-1/2}

f) phương trình vô nghiệm