Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)^4+\left(x+3\right)^4=16\)
\(\Leftrightarrow x+1+x+3=2\)
\(\Leftrightarrow x=-1\)
a, Đặt \(2^x=t,t>0\)
Pt trở thành: \(t^2-10t+16=0\Leftrightarrow\left(t-2\right)\left(t-8\right)=0\Leftrightarrow\orbr{\begin{cases}t=2\\t=8\end{cases}\left(tm\right)}\)
Nếu t=2 => x=1
nếu t=8=> x=3
Vậy x=...
b, Đặt: \(2x^2-3x-1=t\)
pt trở thành: \(t^2-3\left(t-4\right)-16=0\Leftrightarrow t^2-3t-4=0\Leftrightarrow\left(t+1\right)\left(t-4\right)=0\Leftrightarrow\orbr{\begin{cases}t=-1\\t=4\end{cases}}\)
* Nếu t=-1 <=> \(2x^2-3x-1=-1\Leftrightarrow x\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
* Nếu t=4 <=> \(2x^2-3x-1=4\Leftrightarrow2x^2-3x-5=0\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{2}\end{cases}}\)
Vậy x=...
a)(x-3)2 -x(x-2)=0
x=\(\frac{9}{4}\)
b)3x(2-x)+4(x-2) =0
x=2
c)(x-1)2=(49-1)16
x=5308417
d)x3-6x2+9x=0
x=0
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
Ta có ; (x - 3)2 - x(x - 2) = 0
<=> x2 - 6x + 9 - x2 + 2x = 0
<=> -4x + 9 = 0
=> -4x = -9
=> x = \(\frac{9}{4}\)
\(\left(x+4\right)\left(x^2-4x+16\right)-x\left(x-4\right)^2=8\left(x-3\right)\left(x+3\right)\)3)
\(\Leftrightarrow x^3+4^3-x\left(x-4\right)^2=8\left(x^2-3^2\right)\)
\(\Leftrightarrow x^3+64-x\left(x^2-8x+16\right)=8x^2-72\)
\(\Leftrightarrow x^3+64-x^3+8x^2-16x-8x^2-72=0\)
\(\Leftrightarrow-16x-8=0\)
\(\Leftrightarrow-8\left(2x-1\right)=0 \)
\(\Rightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
1/
-x^3 -5x^2 + 4x +4
=> x1 =-5.5877............
x2=1.1895.............
x3=-0.6018............
x3 + (x - 1)3 = (2x - 1)3
<=> x3 + x3 - 3x2 + 3x - 1 = 8x3 - 12x2 + 6x - 1
<=> x3 + x3 - 8x3 - 3x2 + 12x2 + 3x - 6x - 1 + 1 = 0
<=> -6x3 + 9x2 - 3x = 0
<=> 3x.(-2x2 + 3x - 1) = 0
<=> 3x.(-2x2 + 2x + x - 1) = 0
<=> 3x.[-2x.(x - 1) + (x - 1)] = 0
<=> 3x.(x - 1).(1 - 2x) = 0
<=> x = 0 hoặc x - 1 = 0 hoặc 1 - 2x = 0
<=> x = 0 hoặc x = 1 hoặc x = 1/2.
Vậy S = {0; 1/2; 1}.
a) \(x^3-3x^2+4=0\)
\(\Leftrightarrow\left(x-2\right)^2.\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
b) \(\left(2x^2-3x-1\right)^2-3\left(2x^2-3x-5\right)-16=0\)
\(\Leftrightarrow4x^4-12x^3+7x^2+3x=0\)
\(\Leftrightarrow x\left(2x-3\right)\left(2x^2-3x-1\right)=0\)
\(\Leftrightarrow2x-3=0\)
\(\Leftrightarrow2x=0+3\)
\(\Leftrightarrow2x=3\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
a) \(x^3-3x^2+4=0\)
\(\Leftrightarrow\)\(x^3+x^2-4x^2-4x+4x+4=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy....
Bạn xem lại đề, nghiệm xấu lắm
Ta có: (1+1x)3(1+x)3=16(1+1x)3(1+x)3=16
⇔[(1+1x)(1+x)]3=16⇔[(1+1x)(1+x)]3=16
⇔((x+1)23)3=16⇔((x+1)23)3=16
⇔(x+1)627=16⇔(x+1)627=16
⇔(x+1)6=432⇔(x+1)6=432
Đến đây bí rồi