K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

\(\sqrt{36x-72}-15\sqrt{\dfrac{x-2}{25}}=4\left(5+\sqrt{x-2}\right)\) \(\left(x\text{≥}2\right)\)

\(\sqrt{36\left(x-2\right)}-15.\dfrac{\sqrt{x-2}}{5}=20+4\sqrt{x-2}\)

\(6\sqrt{x-2}-3\sqrt{x-2}-4\sqrt{x-2}=20\)

\(-\sqrt{x-2}=20\) ( vô lý )

KL : Phương trình vô nghiệm .

2 tháng 9 2016

Đặt \(\sqrt{x-2}=\:a\)(a >= 0)

Ta có 6a - 3a = 4(5 + a)

<=> a = - 20 (không thỏa điều kiện)

Vậy phương trình vô nghiệm

2 tháng 9 2016

bạn giải rõ hơn chút nữa được không? Mình cám ơn nhiều

15 tháng 10 2021

\(\sqrt{36x-72}-15\sqrt{\dfrac{x-2}{25}}=20+4\sqrt{x-2}\)

\(\Leftrightarrow6\sqrt{x-2}-3\sqrt{x-2}-4\sqrt{x-2}=20\)

\(\Leftrightarrow-\sqrt{x-2}=20\)(vô lý)

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

a. ĐKXĐ: $x\geq 1$

PT $\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{3}{2}.\sqrt{9}.\sqrt{x-1}+24.\sqrt{\frac{1}{64}}.\sqrt{x-1}=-17$

$\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17$

$\Leftrightarrow -\sqrt{x-1}=-17$

$\Leftrightarrow \sqrt{x-1}=17$

$\Leftrightarrow x-1=289$

$\Leftrightarrow x=290$

b. ĐKXĐ: $x\geq \frac{1}{2}$

PT $\Leftrightarrow \sqrt{9}.\sqrt{2x-1}-0,5\sqrt{2x-1}+\frac{1}{2}.\sqrt{25}.\sqrt{2x-1}+\sqrt{49}.\sqrt{2x-1}=24$

$\Leftrightarrow 3\sqrt{2x-1}-0,5\sqrt{2x-1}+2,5\sqrt{2x-1}+7\sqrt{2x-1}=24$
$\Leftrightarrow 12\sqrt{2x-1}=24$

$\Leftrihgtarrow \sqrt{2x-1}=2$

$\Leftrightarrow x=2,5$ (tm)

 

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

c. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \sqrt{36}.\sqrt{x-2}-15\sqrt{\frac{1}{25}}\sqrt{x-2}=4(5+\sqrt{x-2})$

$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$

$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)

Vậy pt vô nghiệm

17 tháng 8 2020

Lời giải:

a) ĐK: $x\geq 2$

PT $\Leftrightarrow \sqrt{36(x-2)}-15\sqrt{\frac{1}{25}.(x-2)}=4(5+\sqrt{x-2})$

$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$

$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)

Vậy pt vô nghiệm.

b) ĐK: $x\geq \frac{1}{2}$

PT $\Leftrightarrow \sqrt{2x-2\sqrt{2x-1}}=2$

$\Leftrightarrow \sqrt{(2x-1)-2\sqrt{2x-1}+1}=2$

$\Leftrightarrow \sqrt{(\sqrt{2x-1}-1)^2}=2$

$\Leftrightarrow |\sqrt{2x-1}-1|=2$

$\Leftrightarrow \sqrt{2x-1}-1=\pm 2$

$\Leftrightarrow \sqrt{2x-1}=3$ (chọn) hoặc $\sqrt{2x-1}=-1$

$\Rightarrow x=5$ (thỏa mãn)

3.

PT \(\left\{\begin{matrix} x+2\geq 0\\ 3x^2=(x+2)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ 2x^2-4x-4=0\end{matrix}\right.\Rightarrow x=1\pm \sqrt{3}\)

AH
Akai Haruma
Giáo viên
23 tháng 10 2020

Lời giải:

a) ĐK: $x\geq 2$

PT $\Leftrightarrow \sqrt{36(x-2)}-15\sqrt{\frac{1}{25}.(x-2)}=4(5+\sqrt{x-2})$

$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$

$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)

Vậy pt vô nghiệm.

b) ĐK: $x\geq \frac{1}{2}$

PT $\Leftrightarrow \sqrt{2x-2\sqrt{2x-1}}=2$

$\Leftrightarrow \sqrt{(2x-1)-2\sqrt{2x-1}+1}=2$

$\Leftrightarrow \sqrt{(\sqrt{2x-1}-1)^2}=2$

$\Leftrightarrow |\sqrt{2x-1}-1|=2$

$\Leftrightarrow \sqrt{2x-1}-1=\pm 2$

$\Leftrightarrow \sqrt{2x-1}=3$ (chọn) hoặc $\sqrt{2x-1}=-1$

$\Rightarrow x=5$ (thỏa mãn)

3.

PT \(\left\{\begin{matrix} x+2\geq 0\\ 3x^2=(x+2)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ 2x^2-4x-4=0\end{matrix}\right.\Rightarrow x=1\pm \sqrt{3}\)

7 tháng 7 2017

a,bạn viết thiếu đầu bài

b,<=>3x-2=4

<=>3x=6

<=>x=2

vậy...........................

c,=>\(5\left(2\sqrt{x}-19\right)=4-\sqrt{x}\)ĐKXĐ x>=0 x khác 16

<=>\(10\sqrt{x}-95-4+\sqrt{x}=0\)

<=>\(11\sqrt{x}-99=0\)

<=>\(11\sqrt{x}=99\)

<=>\(\sqrt{x}=9< =>x=81\)

vậy.............

k mk nha

7 tháng 7 2017

#quynh tong ngoc ơi, câu a đề bài là vậy rồi nhé >< Mình viết đúng đấy bạn ạ

2 tháng 7 2018

a) \(\sqrt{\left(x-3\right)^2}=3\Leftrightarrow\left|x-3\right|=3\) \(\Leftrightarrow\left[{}\begin{matrix}x-3=3\\x-3=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\left(N\right)\\x=0\left(N\right)\end{matrix}\right.\)

b) \(\sqrt{4x^2-20x+25}+2x=5\Leftrightarrow\left|2x-5\right|+2x-5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-5\ge0\\2x-5+2x-5=0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-5\le0\\5-2x+2x-5=0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\4x-10=0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{5}{2}\\0x=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\x=\dfrac{10}{4}\left(N\right)\end{matrix}\right.\\x\le\dfrac{5}{2}\end{matrix}\right.\) ** 10/4 = 5/2 rồi**

Kl: x \< 5/2

c) \(\sqrt{1-12x+36x^2}=5\Leftrightarrow\left|1-6x\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}1-6x=5\\1-6x=-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\left(N\right)\\x=1\left(N\right)\end{matrix}\right.\)

Kl: x=-2/3, x=1

d) Đk: x >/ 1

\(\sqrt{x+2\sqrt{x-1}}=2\Leftrightarrow\left|\sqrt{x-1}+1\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}+1=2\left(1\right)\\\sqrt{x-1}+2=-2\left(VN\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x=2\)(N)

Kl: x=2

e) Đk: x >/ 1

\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}-1\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}\ge1\\\left|\sqrt{x-1}-1\right|=\sqrt{x-1}-1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{x-1}-1=\sqrt{x-1}-1\) (luôn đúng)

kl: x >/ 1

f) \(\sqrt{x^2-\dfrac{1}{2}x+\dfrac{1}{16}}=\dfrac{1}{4}-x\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{4}\\\left|\dfrac{1}{4}-x\right|=\dfrac{1}{4}-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{4}\\\dfrac{1}{4}-x=\dfrac{1}{4}-x\end{matrix}\right.\)

(luôn đúng)

Kl: x \< 1/4

Lần sau xé nhỏ câu hỏi giùm con nha má, để nhiều thế này thất thu T_T!