K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2018

1 ) \(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\)

Đặt \(t=x^2+x\), ta được :

\(t^2+4t-12=0\)

\(\Leftrightarrow t^2-2t+6t-12=0\)

\(\Leftrightarrow\left(t-2\right)\left(t+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-6\end{matrix}\right.\)

+ ) Khi \(t=2,\) thì :

\(x^2+x=2\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

+ ) Khi \(t=-6,\) thì :

\(x^2+x=-6\)

\(\Leftrightarrow x^2+x+6=0\)

\(\Leftrightarrow x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{23}{4}=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}=0\) ( vô lí )

Vậy .........

2 ) \(6x^4-5x^3-38x^2-5x+6=0\)

\(\Leftrightarrow6x^4-18x^3+13x^3-39x^2+x^2-3x-2x+6=0\)

\(\Leftrightarrow6x^3\left(x-3\right)+13x^2\left(x-3\right)+x\left(x-3\right)-2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(6x^3+13x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(6x^3+12x^2+x^2+2x-x-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left[6x^2\left(x+2\right)+x\left(x+2\right)-\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)\left(6x^2+x-1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)\left(6x^2+3x-2x-1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)\left[3x\left(2x+1\right)-\left(2x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)\left(3x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=\dfrac{1}{3}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

1 tháng 9 2019

(x4-x3)+(6x3-6x2)-(6x2-6x)-(x-1)=0

(x-1)(x3+6x2-6x-1)=0

(x-1)[(x3-x2)+(7x2-7x)+(x-1)]=0

(x-1)2(x2+7x+1)=0

(x-1)2[(x2+3,5×2x2x+12,25-11,25)=0

(x-1)2[(x+3,5)2-(căn11,25)2]=0

(x-1)2(x+3,5-căn5-căn11,25)(xx+3,5+căn11,25)=0

Từ đó suy ra 3 giá trị của x

20 tháng 7 2019

a)\(=\left(x^4-x^3\right)+\left(6x^3-6x^2\right)-\left(6x^2-6x\right)-\left(x-1\right)\)

\(=x^3\left(x-1\right)+6x^2\left(x-1\right)-6x\left(x-1\right)-\left(x-1\right)\)

\(=\left(x-1\right)\left(x^3+6x^2-6x-1\right)\)

\(=\left(x-1\right)\left[\left(x-1\right)\left(x^2+x+1\right)+6x\left(x-1\right)\right]\)

\(=\left(x-1\right)^2\left(x^2+7x+1\right)\)

1 tháng 3 2019

1) \(x^4-6x^3-x^2+54x-72=0\)

\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

Tự làm nốt...

2) \(x^4-5x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

Tự làm nốt...

1 tháng 3 2019

\(x^4-2x^3-6x^2+8x+8=0\)

\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)

...

\(2x^4-13x^3+20x^2-3x-2=0\)

\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)

21 tháng 8 2017

\(f,\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)

Đặt \(t=x^2+5x+4\) , ta có
\(t\left(t+2\right)-24\)

\(=t^2+2t-24\)

\(=\left(t^2+2t+1\right)-25\)

\(=\left(t+1\right)^2-5^2\)

\(=\left(t+1-5\right)\left(t+1+5\right)\)

\(=\left(t-4\right)\left(t+6\right)\)

\(=\left(x^2+5x+4-4\right)\left(x^2+5x+4+6\right)\)

\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)

\(g,\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)-20\)

\(=\left(x-1\right)\left(x-7\right)\left(x-3\right)\left(x-5\right)-20\)

\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)-20\)

Đặt \(t=x^2-8x+7\), ta có:

\(t\left(t+8\right)-20\)

\(=t^2+8t-20\)

\(=\left(t^2+8t+16\right)-36\)

\(=\left(t+4\right)^2-6^2\)

\(=\left(t+4+6\right)\left(t+4-6\right)\)

\(=\left(t+10\right)\left(t-2\right)\)

\(=\left(x^2-8x+7+10\right)\left(x^2-8x+7-2\right)\)

\(=\left(x^2-8x+17\right)\left(x^2-8x+5\right)\)

5 tháng 7 2016

1.

Đặt \(x^2-5x=a\Rightarrow a^2=\left(x^2-5x\right)^2\)

Thay vào pt:

\(\Rightarrow a^2+10a+24=0\)

\(\Leftrightarrow a^2+6a+4a+24=0\)

\(\Leftrightarrow a\left(a+6\right)+4\left(a+6\right)=0\)

\(\Leftrightarrow\left(a+6\right)\left(a+4\right)=0\)

\(\Leftrightarrow\left(x^2-5x+6\right)\left(x^2-5x+4\right)=0\)

\(\Leftrightarrow\left(x^2-3x-2x+6\right)\left(x^2-4x-x+4\right)=0\)

\(\Leftrightarrow\left[x\left(x-3\right)-2\left(x-3\right)\right]\left[x\left(x-4\right)-\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x-4\right)\left(x-1\right)=0\)

\(\Rightarrow x-3=0,x-2=0,x-4=0,x-1=0\)

\(\Rightarrow x=3,x=2,x=4,x=1\)

T I C K mình sẽ giải típ cho cảm ơn

5 tháng 7 2016

típ nha

15 tháng 10 2015

Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath tích mình nha