Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt x2=a;y=b
<=>a3-a+6=b3-b
<=>b3-a3-(b-a)=6
<=>(b-a)(b2+ab+a2)-(b-a)=6
<=>(b-a)(b2+ab+a2-1)=6
đến đây là phương trình ước số rồi,lập bảng là đc
Với gía trị nào của a 0<= a<=9 thì các số dạng 4...4aa..a mỗi cái có n cs và 11...1aa...a mỗi cái có n cs a đồng thời là tích 2 số tự nhiên liên tiếp
a)\(3^x-y^3=1\)
- Nếu x<0 suy ra y không nguyên
- Nếu x=0 => y=0
- Nếu x=1 =>y không nguyên
- Nếu x=2 =>y=2
- Nếu x>2 \(pt\Rightarrow3^x=y^3+1\left(x>2\right)\Rightarrow y^3>9\)
Ta suy ra \(y^3+1⋮9\Rightarrow y^3:9\) dư -1
\(\Rightarrow y=9k+2\) hoặc \(y=9k+5\) hoặc \(y=9k+8\) (k nguyên dương) (1)
Mặt khác ta cũng có \(y^3+1⋮3\) nên \(y=3m+2\) (m nguyên dương)
Từ (1) và (2) suy ra vô nghiệm
Vậy pt có 2 nghiệm nguyên là (0;0) và (2;2)
b)Xét .... ta dc x=y=0 hoặc x=1 và y=2
c)Xét.... x=y=0 hoặc x=0 và y=-1 hoặc x=-1 và y=0 hoặc x=y=-1
1) Vì \(2003 \equiv 2 \pmod{2}\)
Nên xảy ra các trường hợp sau:
TH 1: Một số chia 3 dư 1, 2 , số còn lại chia 3 dư 2
Giả sử : \(x=3k+1,y=3m+2,z=3p+1\)
Khi đó: \(VT \equiv 8 \pmod{9}\) hay \(2003 \equiv 8 \pmod{9}\) (vô lí)
TH 2: Một số chia 3 dư 0 ,2 số còn lại chia 3 dư 1
Tương tự như vậy ta cũng được \(VT \equiv 2 \pmod{9}\)
Hay : \(2003 \equiv 2 \pmod{9}\)
Vậy phương trình trên vô nghiệm
$x^{3}+y^{3}+z^{3}=2003$ - Số học - Diễn đàn Toán học
bài này ko khó nhưng mình ngại làm quá,thông cảm
Phương trình được viết lại:
\(4x^2+4x+1=4y^4+4y^3+y^2+3y^2+4y+1\)
\(\Leftrightarrow4x^2+4x+1=\left(2y^2+y\right)^2+3y^2+4y+1\)
\(\Leftrightarrow\left(2x+1\right)^2=\left(2y^2+y+1\right)^2+2y-y^2\)
Nếu: \(y=-1\)và \(2y-y^2< 0\Rightarrow3y^2+4y+1>0\)
\(\Rightarrow\left(2y^2+y\right)^2< \left(2x+1\right)^2< \left(2y^2+y+1\right)^2\)
Ta thấy vô lí vì \(\left(2y^2+y\right)^2;\left(2y^2+y+1\right)\)là 2 số chính phương liên tiếp.
Vì thế nên \(y\)nhận 1 trong những giá trị: \(-1;0;1;2\)
- \(y=-1\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
- \(y=0\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
- \(y=1\Rightarrow\)Không tồn tại \(x\)
- \(y=2\Rightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}\)
Vậy các nghiệm nguyên của phương trình là: \(\left(x,y\right)\in\left\{\left(0;-1\right),\left(-1;-1\right);\left(0;0\right);\left(-1;0\right);\left(5;2\right);\left(-6;2\right)\right\}\)
Xét y = 0 thì x = 0
Xét \(y\ne0\)
\(x^3+y^3=y^6\)
\(\Leftrightarrow x^3=y^3\left(y^3-1\right)⋮y^3\)
\(\Rightarrow x⋮y\)
\(\Rightarrow x=ky\)
\(\Rightarrow y^3k^3+y^3=y^6\)
\(\Leftrightarrow k^3+1=y^3\)
\(\Leftrightarrow\left(y-k\right)\left(y^2+ky+k^2\right)=1\)
Làm nốt