K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2017

sửa \(x^4+y^4+14y^2+49\)

6 tháng 6 2017

$(x^2+4y^2+28)^2=17(x^4+y^4+14y^2+49)$ - Số học - Diễn đàn Toán học

5 tháng 2 2017

\(\left(x^2+4z\right)^2=17\left(x^4+z^2\right)\)

\(x^4+8x^2z+16z^2=17x^4+17z^2\)

\(t^4-2t^2z+z^2=\left(t^2-z\right)^2=0\)

Nghiệm duy nhất: \(t^2=z\Rightarrow t^2=y^2+7\Rightarrow\hept{\begin{cases}t=4\Rightarrow x=2\\y=3\end{cases}}\)KL (x,y)=(2,3)

10 tháng 4 2018

\(\left(x^2+4y^2+28\right)^2=17\left[x^4+\left(y^2+7\right)^2\right]\)

y^2 +7 =z

\(\Leftrightarrow x^4+8xz+16z^2=17x^4+17z^2\)

\(\Leftrightarrow16x^4+z^2-8xz=0\)\(\Leftrightarrow\left(4x^2-z\right)^2=0\)

\(\Leftrightarrow4x^2=z\Leftrightarrow4x^2-y^2=7\)

\(\left\{{}\begin{matrix}4x^2=16\\y^2=9\end{matrix}\right.\) \(\Leftrightarrow\left(x;y\right)=\left(\pm2;\pm3\right)\)

10 tháng 4 2018

Violympic toán 8

11 tháng 4 2018

\(\Leftrightarrow-\left(4x^2-y^2-7\right)^2=0\)

SURPRISE MOTHERFUKA !!

18 tháng 10 2020

Ta có:

\(2^x\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)\) là tích 5 số tự nhiên nên chia hết cho 5 

Mà 2x không chia hết cho 5 nên

\(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)⋮5\)

Mà 11879 không chia hết cho 5 nên y=0

=> \(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)=11880=9.10.11.12\Rightarrow x=3\)

Vậy pt có nghiệm (x;y)=(3;0)

20 tháng 4 2018

a/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x+1}{x-4}=b\end{cases}}\) thì có

\(a^2+b-\frac{12b^2}{a^2}=0\)

\(\Leftrightarrow\left(a^2-3b\right)\left(a^2+4b\right)=0\)

b/ \(2x^2+3xy-2y^2=7\)

\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)

20 tháng 3 2018

\(|x^2-2xy+y^2+3x-2y-1|+4=2x-|x^2-3x+2|\)

\(\Leftrightarrow2x-4=|x^2-2xy+y^2+3x-2y-1|+|x^2-3x+2|\ge0\)

\(\Leftrightarrow x\ge2\)

Với \(x\ge2\)thì ta suy ra được

\(\hept{\begin{cases}x^2-2xy+y^2+3x-2y-1=\left(x-y+1\right)^2+x-2\ge0\\x^2-3x+2=\left(x-2\right)^2+x-2\ge0\end{cases}}\)

Từ đây ta bỏ dấu giá trị tuyệt đối thì ta có:

\(x^2-2xy+y^2+3x-2y-1+4=2x-\left(x^2-3x+2\right)\)

\(\Leftrightarrow2x^2+y^2-2xy-2x-2y+5=0\)

\(\Leftrightarrow\left(x-y+1\right)^2+\left(x-2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

x 2 − 2xy + y 2 + 3x − 2y − 1| + 4 = 2x − |x 2 − 3x + 2| ⇔2x − 4 = |x 2 − 2xy + y 2 + 3x − 2y − 1| + |x 2 − 3x + 2| ≥ 0 ⇔x ≥ 2 Với x ≥ 2thì ta suy ra được x 2 − 2xy + y 2 + 3x − 2y − 1 = x − y + 1 2 + x − 2 ≥ 0 x 2 − 3x + 2 = x − 2 2 + x − 2 ≥ 0 Từ đây ta bỏ dấu giá trị tuyệt đối thì ta có: x 2 − 2xy + y 2 + 3x − 2y − 1 + 4 = 2x − x 2 − 3x + 2 ⇔2x 2 + y 2 − 2xy − 2x − 2y + 5 = 0 ⇔ x − y + 1 2 + x − 2 2 = 0 ⇔ x = 2 y = 3 

4 tháng 2 2020

bla ta da dech hiu

x^2+4x+4 +x^4+16x^3+96x^2+256x+256= -x^3-9x^2-28x-28

(x^2+4x+4)+  ( x^4 + 16x^3 + 96x^2 + 256x+ 256) + (x^3+9x^2+28x+28)=0

x^4+ 17 x^3 + 106x^2 + 288x + 288=0

x^4+ 3x^3+ 14x^3+42x^2+ 64x^2+192x+96x+288=0

(x+3)(x^3+14x^2+64x+96)=0

(x+3)(x^3+6x^2+8x^2+48x+16x+96)=0

(x+3)(x+6)(x^2+8x+16)=0

(x+3)(x+6)(x+4)^2=0

Vậy x=-3 hay x=-6 hay x=-4

Dễ thấy vế trái chia hết cho 5 với y >0
Vậy y=0 , giải ra x 

Học tốt!!!!!!!

 Ta có :  2x;2x+1;2x+2;2x+3;2x+4 là 5 số tự nhiên liên tiếp.

                        =>  2x(2x+1)(2x+2)(2x+3)(2x+4)⋮5

                Mặt khác ƯCLN ( 2x; 5)=1 nên  (2x+1)(2x+2)(2x+3)(2x+4)⋮5 

                + Với  y≥1 thì VP= [(2x+1)(2x+2)(2x+3)(2x+4)−5y]⋮5 

                Mà VP= 11879≡4(mod5) 

                Suy ra phương trình vô nghiệm

                +Với y=0 ta có :

                        (2x+1)(2x+2)(2x+3)(2x+4)−50=11879 

                 <=> (2x+1)(2x+2)(2x+3)(2x+4)=11880 

                 <=> (2x+1)(2x+2)(2x+3)(2x+4)=9.10.11.12

                 <=> 2x+1=9 

                 <=> 2x=8 

                 <=> 2x=23 

                 <=>x=3

                 Vậy phương trình đã cho có 1 nghiệm duy nhất (x; y)=(3; 0)