\(\left\{{}\begin{matrix}x^2+13y^2=z^2\\13z^2+y^2=t^2\en...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2018

Gọi d là ước chung lớn nhất của x, y

\(\Rightarrow\left(x,y\right)=d\)

\(\Rightarrow x,y,z,t⋮d\)

\(\Rightarrow x=dx_1;y=dy_1;z=dz_1;t=dt_1;\)

Với \(x_1;y_1;z_1;t_1\in N;\left(x_1;y_1\right)=1\)

\(\Rightarrow14\left(x_1^2+y^2_1\right)=z_1^2+t_1^2⋮7\)

\(\Rightarrow z_1;t_1⋮7\)

\(\Rightarrow x_1^2+y_1^2⋮7\)

\(\Rightarrow x_1;y_1⋮7\)

Trái giả thuyết nên phương trình vô nghiệm nguyên.

13 tháng 7 2018

Aki Tsuki hattori heiji Akai Haruma

3 tháng 1 2018

mọi người ơi giúp mình vs mai ktra r

b: =>x^2-y^2-4y-2x-3=0 và x^2+2x+y=0

=>x^2-2x+1-y^2-4y-4=0 và x^2+2x+y=0

=>x=1 và y=-2 và x^2+2x+y=0

=>Hệ vô nghiệm

a: \(\Leftrightarrow\left\{{}\begin{matrix}z=2x-5\\y=3-2x+z=3-2x+2x-5=-2\\3x-2\cdot\left(-2\right)+2x-5=14\end{matrix}\right.\)

=>y=-2; 3x+4+2x-5=14; z=2x-5

=>y=-2; x=3; z=2*3-5=1

NV
11 tháng 2 2020

a/ Đơn giản là dùng phép thế:

\(x+2y+x+y+z=0\Rightarrow x+2y=0\Rightarrow x=-2y\)

\(x+y+z=0\Rightarrow z=-\left(x+y\right)=-\left(-2y+y\right)=y\)

Thế vào pt cuối:

\(\left(1-2y\right)^2+\left(y+2\right)^2+\left(y+3\right)^2=26\)

Vậy là xong

b/ Sử dụng hệ số bất định:

\(\left\{{}\begin{matrix}a\left(\frac{x}{3}+\frac{y}{12}-\frac{z}{4}\right)=a\\b\left(\frac{x}{10}+\frac{y}{5}+\frac{z}{3}\right)=b\end{matrix}\right.\)

\(\Rightarrow\left(\frac{a}{3}+\frac{b}{10}\right)x+\left(\frac{a}{12}+\frac{b}{5}\right)y+\left(\frac{-a}{4}+\frac{b}{3}\right)z=a+b\) (1)

Ta cần a;b sao cho \(\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}=-\frac{a}{4}+\frac{b}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}\\\frac{a}{3}+\frac{b}{10}=-\frac{a}{4}+\frac{b}{3}\end{matrix}\right.\) \(\Rightarrow\frac{a}{2}=\frac{b}{5}\)

Chọn \(\left\{{}\begin{matrix}a=2\\b=5\end{matrix}\right.\) thay vào (1):

\(\frac{7}{6}\left(x+y+z\right)=7\Rightarrow x+y+z=6\)

8 tháng 8 2017

\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)

Lấy (2) cộng (3) ta được

\(x^2+y^2-yz-zx=2\) (4)

Lấy (1) - (4) ta được

\(2x\left(x+z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)

Xét 2 TH rồi thay vào tìm được y và z

8 tháng 8 2017

1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)

Đến đây thì dễ rồi nhé

NV
26 tháng 7 2020

b/

Lần lượt cộng trừ vế cho vế ta được:

\(\left\{{}\begin{matrix}x^3+y^3=7\left(x+y\right)\\x^3-y^3=19\left(x-y\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)\left(x^2+y^2-xy-7\right)=0\\\left(x-y\right)\left(x^2+y^2+xy-19\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\\\left\{{}\begin{matrix}x^2+y^2-xy-7=0\\x^2+y^2+xy-19=0\end{matrix}\right.\end{matrix}\right.\)

Hai trường hợp đầu bạn tự thế vào giải

Trường hợp 3, trừ vế cho vế: \(2xy-12=0\Rightarrow xy=6\Rightarrow y=\frac{6}{x}\)

Thế vào pt đầu: \(x^3=13x-\frac{36}{x}\Leftrightarrow x^4-13x^2+36=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2=9\\x^2=4\end{matrix}\right.\)

NV
26 tháng 7 2020

a/ Trừ vế cho vế:

\(2x-2y=y^2-x^2-4y+4x\)

\(\Leftrightarrow x^2-y^2-2x+2y=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=x\\y=2-x\end{matrix}\right.\)

Thế vào pt đầu:

\(\Rightarrow\left[{}\begin{matrix}2x=x^2-4x+5\\2x=\left(2-x\right)^2-4\left(2-x\right)+5\end{matrix}\right.\)

Bạn tự giải nốt