Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
a) Viết lại phương trình như sau: x2 - 3x + 2 - y - y2 = 0
Coi x là ẩn; y là tham số
ta có: \(\Delta\) = (-3)2 - 4(2 - y - y2 ) = 4y2 + 4y + 1 = (2y + 1)2 \(\ge\) 0 với mọi y
=> phương trình đã cho luôn có nghiệm là : \(x_1=\frac{3+2y+1}{2}=y+2;x_2=\frac{3-2y-1}{2}=1-y\)
b) x = y + 2 và x = 1 - y thoả mãn phương trình
=> y = x - 2 và y = 1 - x thoả mãn phương trình
c) do x = y + 2 và x = 1 - y là nghiệm của phương trình x2 - 3x + 2 - y - y2 = 0
=> x2 - 3x + 2 - y - y2 = (x - y - 2). (x - 1+ y)
*) Chú ý: Nếu x1; x2 là nghiệm của ax2 + bx + c = 0 => ax2 + bx + c = a.(x - x1)(x - x2)
Help!!
(x2+x+1)(x2+x+2)=12
x(x+1)(x2+x+1)=42
(x2+x+1)2= 3(x4+x2+1)
a. \(x^2\left(y-1\right)+y^2\left(x-1\right)=1\)
<=> \(x^2y+y^2x-\left(x^2+y^2\right)=1\)
<=> \(xy\left(x+y\right)-\left(x+y\right)^2+2xy=1\)
Đặt: x + y = u; xy = v => u; v là số nguyên
Ta có: uv - \(u^2+2v=1\)
<=> \(u^2-uv-2v+1=0\)
<=> \(u^2+1=v\left(2+u\right)\)
=> \(u^2+1⋮2+u\)
=> \(u^2-4+5⋮2+u\)
=> \(5⋮2-u\)
=> 2 - u = 5; 2 - u = -5; 2- u = 1; 2- u = -1
Mỗi trường hợp sẽ tìm đc v
=> x; y
câu 1,2 nhân 4 vào 2 vế đưa về dạng a2-b2=q(q là số nguyên) rồi tách thành phương trình ước số => tự giải tiếp
còn câu 3 tui hông nghĩ ra....
\(2x^2-y^2+xy-3x+3y-3=0\)
\(\Leftrightarrow2x^2-xy+x+2xy-y^2+y-4x+2y-2=1\)
\(\Leftrightarrow\left(2x-y+1\right)\left(x+y-2\right)=1\)
Từ đây bạn xét bảng giá trị và thu được kết quả cuối cùng là: \(\left(x,y\right)=\left(1,2\right)\).