Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NHÂN VỚI 4 TA CÓ
\(\Leftrightarrow12x^2-8xy+4y-20x+8=0\)0
\(\Leftrightarrow\left(12x^2-20x+6\right)-4y\left(2x-1\right)-\left(2x-1\right)+1=0\)
\(\Leftrightarrow2\left(2x-1\right)\left(3x-3\right)-4y\left(2x-1\right)-\left(2x-x\right)+1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(6x-4y-7\right)=-1\)
ĐẾN ĐAY BẠN TỰ GIẢI
\(2x^2-y^2+xy-3x+3y-3=0\)
\(\Leftrightarrow2x^2-xy+x+2xy-y^2+y-4x+2y-2=1\)
\(\Leftrightarrow\left(2x-y+1\right)\left(x+y-2\right)=1\)
Từ đây bạn xét bảng giá trị và thu được kết quả cuối cùng là: \(\left(x,y\right)=\left(1,2\right)\).
Ta có \(x^2+2xy+y^2+y^2=4-3y\)\(\Leftrightarrow\left(x+y\right)^2+y^2=4-3y\).
Suy ra \(4-3y>0\Leftrightarrow3y< 4\).
Do y nguyên dương nên \(y=1\).
Thay vào phương trình ta có: \(\left(x+1\right)^2+1^2=4-3.1\) \(\Leftrightarrow\left(x+1\right)^2=0\)\(\Leftrightarrow x+1=0\)\(\Leftrightarrow x=-1\). (Loại vì x nguyên dương).
Vậy không có giá trị nào của x thỏa mãn.
\(x^2+2y^2+2xy+3y-4=0\)
\(\Leftrightarrow x^2+2xy+\left(2y^2+3y-4\right)=0\)
Coi phương trình trên có ẩn là x.
Phương trình có nghiệm khi \(\Delta'=y^2-\left(2y^2+3y-4\right)\ge0\)
\(\Leftrightarrow-y^2-3y+4\ge0\)\(\Leftrightarrow y^2+3y-4\le0\)
\(\Leftrightarrow\left(y-1\right)\left(y+4\right)\le0\Leftrightarrow-4\le y\le1\)
Thay vào từng giá trị nguyên của y để tìm x=)
\(xy^2+2xy-8y+x=0\)
\(\Leftrightarrow xy^2+2xy+x=8y\)
\(\Leftrightarrow x\left(y^2+2y+1\right)=8y\)
\(\Leftrightarrow x\left(y+1\right)^2=8y\)
\(\Leftrightarrow\left(y+1\right)^2=\dfrac{8y}{x}=2^2.\dfrac{2y}{x}\left(x\ne0\right)\left(1\right)\)
Ta thấy \(VP=\left(y+1\right)^2\) là số chính phương lẻ hoặc chẵn
mà \(VP=2^2.\dfrac{2y}{x}\) là số chính phương chẵn \(\left(2^2;\dfrac{2y}{x}⋮2\right)\) và \(\dfrac{2y}{x}\) cũng là số chính phương
\(\Rightarrow\left(y+1\right)^2\) là số chính phương chẵn
\(\Rightarrow y\) là số lẻ
Vậy để thỏa \(\left(1\right)\) ta thấy \(y=1;x=2\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(2;1\right)\right\}\left(x;y\in Z\right)\)
xy^3 + 2xy^2 - 8y^2 + x = 0
z^3 + 2z^2 - 8z + x = 0
z = (1 + 2 \sqrt{2}) \pm (1 - 2 \sqrt{2}) \sqrt{3}
xy = (1 + 2 \sqrt{2}) \pm (1 - 2 \sqrt{2}) \sqrt{3}
(x, y) = (1, 1), (1, -1), (-1, 1), (-1, -1)
Vậy, nghiệm nguyên của phương trình xy2+2xy−8y+x=0 là (1,1),(1,−1),(−1,1),(−1,−1).
thumb_upthumb_down
share
Tìm trên Google