K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 3 2022

\(y^2\left(y^2-1\right)+2y\left(y^2-1\right)-x^2-x=0\)

\(\Leftrightarrow\left(y^2+2y\right)\left(y^2-1\right)-x^2-x=0\)

\(\Leftrightarrow y\left(y+1\right)\left(y-1\right)\left(y+2\right)-x^2-x=0\)

\(\Leftrightarrow\left(y^2+y\right)\left(y^2+y-2\right)-x^2-x=0\)

\(\Leftrightarrow\left(y^2+y\right)^2-2\left(y^2+y\right)-x^2-x=0\)

\(\Leftrightarrow\left(y^2+y-1\right)^2-1-x^2-x=0\)

\(\Leftrightarrow\left(2y^2+2y-2\right)^2-\left(2x+1\right)^2-3=0\)

\(\Leftrightarrow\left(2y^2+2y-2x-3\right)\left(2y^2+2y+2x-1\right)=3\)

Pt ước số

26 tháng 3 2017

\(pt\Leftrightarrow\left(x-1\right)\left(x-2y^2-y+2\right)=1\)

Ok ?!

24 tháng 8 2017

>>>>x^2-(2y^2+1-y)x+2y^2-y-1=0

>>>>delta=(2y^2+1-y)^2-4(2y^2-y-1) (tự tính nha bn)

có kq>>>để pt có no nguyên>>>>delta là sôc chính phương>>>xong

12 tháng 3 2016

thông điệp nhỏ:

hay kkhi ko muốn k

1 tháng 11 2020

Bài 1 :

a) \(x^3-x^2-x-2=0\)

\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)

\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)

\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)

Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)

Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)

Vậy \(x=2\)

1 tháng 11 2020

Bài 2: 

\(2x^2+y^2-2xy+2y-6x+5=0\)

\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)

Vì \(\left(x-y-1\right)^2\ge0\forall x,y\)\(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)

Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)

Vậy \(x=2\)và \(y=1\)

3 tháng 10 2016

x2+xy+y2=x2y2

\(\Leftrightarrow\left(y^2-1\right)x^2-xy-y^2=0\)(*)

Xét \(y^2=1\Leftrightarrow y=\pm1\)

  • Với \(y=1\)thay vào (*) ta có: \(x=-1\)
  • Với \(y=-1\)thay vào (*) ta có: \(x=1\)

Xét \(y\ne\pm1\) ta có: \(\Delta=y^2\left(4y^2-3\right)\)  là 1 số chính phương

Đặt \(\left(2y\right)^2-3=n^2\left(n\in N\right)\)

\(\Leftrightarrow\left(2y\right)^2-n^2=3\)

\(\Leftrightarrow\left(\left|2y\right|-n\right)\left(\left|2y\right|+n\right)=3\)

Vì \(\left(\left|2y\right|+n\right)\in N;\left(\left|2y\right|-n\right)\in N\)\(\Rightarrow2y+n\ge\left|2y\right|-n\)

Ta có hệ \(\hept{\begin{cases}\left|2y\right|+n=3\\\left|2y\right|-n=1\end{cases}}\Leftrightarrow\left|2y\right|=2\Leftrightarrow y=\pm1\)

Không thỏa mãn vì \(y\ne\pm1\)

Vậy ta có nghiệm của pt \(\left(x;y\right)\in\left\{\left(0;0\right);\left(-1;-1\right);\left(-1;1\right)\right\}\)