Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
VD1:
Với \(\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)ta có :
\(x^3< x^3+x^2+x+1< \left(x+1\right)^3\)
\(\Rightarrow x^3< y^3< \left(x+1\right)^3\)( không thỏa mãn )
\(\Rightarrow-1\le x\le0\)
Mà \(x\in Z\Rightarrow x\in\left\{-1;0\right\}\)
Với \(\orbr{\begin{cases}x=-1\\x=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}}\)
Vậy...........................
#)Giải :
VD2:
\(x^4-y^4+z^4+2x^2z^2+3x^2+4z^2+1=0\)
\(\Leftrightarrow y^4=x^4+z^4+2x^2z^2+3x^2+4z^2+1\)
\(\Leftrightarrow y^4=\left(x^2+y^2\right)+3x^2+4z^2+1\)
Ta dễ nhận thấy : \(\left(x^2+y^2\right)^2< y^4< \left(x^2+y^2+2\right)^2\)
Do đó \(y^4=\left(x^2+y^2+1\right)^2\)
Thay vào phương trình, ta suy ra được \(x=z=0\)
\(\Rightarrow y=\pm1\)
Với x=-1 => y^3=-4 (loại)
Với x=0 => y^3=-2 (loại)
Với x=1 => y^3=4 (loại)
+ ) Với \(\hept{\begin{cases}x\le-2\\x\ge2\end{cases}\Rightarrow}\left(x+2\right)\left(2x-1\right)\ge0.\Leftrightarrow2x^2+3x-2\ge0\)
\(\Leftrightarrow x^3+2x^2+3x-2\ge x^3\)(1)
Ta có : \(-x^2< 3\Leftrightarrow-x^2-2< 1\Leftrightarrow2x^2-2< 3x^2+1\)\(\Leftrightarrow x^3+3x+2x^2-2< x^3+3x+3x^2+1\)
\(\Leftrightarrow x^3+2x^2+3x-2< \left(x+1\right)^3\)(2)
Từ (1) và (2) suy ra \(x^3\le x^3+2x^x+3x-2=y^3< \left(x+1\right)^3\)
\(\Rightarrow y^3=x^3+2x^2+3x-2=x^3\Leftrightarrow2x^3+3x-2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x+2\right)=0\Rightarrow x=-2\)
Thay x=-2 vào phương trình ban đầu ta tìm được y^3=-8 -=> y=-2
Vậy....(-2;-2)
Ta
\(x^4+2x^3+3x^2+2x=y^2-y\)
\(\Leftrightarrow x^4+x^2+1+2x^3+2x^2+2x=y^2-y+1\)
\(\Leftrightarrow\left(x^2+x+1\right)^2=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\Leftrightarrow\left(x^2+x+1-y+\frac{1}{2}\right)\left(x^2+x+1+y-\frac{1}{2}\right)=\frac{3}{4}\)
\(\Leftrightarrow\left(x^2+x-y+\frac{3}{2}\right)\left(x^2+x+y+\frac{1}{2}\right)=\frac{3}{4}\)
\(\Leftrightarrow\left(2x^2+2x-2y+3\right)\left(2x^2+2x+2y+1\right)=3\)
Đến đây chắc khó.
Làm cái này thử đi:
Cho \(x,y\ge0\)giải phương trình.
\(9^x-8^x=19y\)
Giải được thì nói tiếp :3
Ta có:
\(x^6+3x^2+1=y^4\)
\(\Leftrightarrow4x^6+12x^3+4=4y^4\)
\(\Leftrightarrow4x^6+12x^3+9=4y^4+5\)
\(\Leftrightarrow\left(2x^3+3\right)^2-4y^4=5\)
\(\Leftrightarrow\left(2x^3+2y^2+3\right)\left(2x^3-2y^2+3\right)=5\)
\(\Rightarrow\orbr{\begin{cases}2x^3+2y^2+3=5\\2x^3-2y^2+3=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0;y=1\\x=0;y=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x^3+2y^2+3=-1\\2x^3-2y^2+3=-5\end{cases}\Leftrightarrow x=\sqrt[3]{-6}}\) (loại)
Vậy PT có nghiệm \(\left(x;y\right)=\left(0;1\right);\left(0;-1\right)\)
Nhận thấy x = 0 và y = \(\pm1\) là nghiệm nguyên của phương trình
+) Với x = 0
\(\left(x^3+1\right)^2=x^6+2x^3+1< x^6+3x^3+1=y^4< x^6+4x^3+4=\left(x^3+2\right)^2\)
=> \(x^3+1< y< x^3+2\) (Vô lý)
+) Với x < 0
-) Với x = -1 => y4 = -1 (vô nghiệm)
-) Với x \(\le-2\)
\(\left(x^3+2\right)^2< x^6+3x^3+1=y^4< x^6+2x^3+1=\left(x^3+1\right)^2\)
=> \(\left|x^3+2\right|< y^2< \left|x^3+1\right|\) (Vô lý )
Vậy phương trình có 2 cặp nghiệm thõa mãn đề bài là (0;1) và (0;-1)
Ta có \(x^6< x^6+3x^2+1< x^6+6x^4+12x^2+8=\left(x^2+2\right)^3\).
Theo nguyên lí kẹp ta có \(x^6+3x^2+1=\left(x^2+1\right)^3\Leftrightarrow x^4=0\Leftrightarrow x=0\).
Khi đó y = 1.
Vậy...