\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{1995}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2020

Ta có : x+1/x+y bé hơn hoặc = 1 <=> gtln = 1 tại y = 1

Tương tự ta có : gtln của VT  là 3 

Nên pt trên vô nghiệm :))

Chắc sai rồi ạ :D

7 tháng 8 2018

Hãy tích nếu như bạn thông minh

Ai ko tích là bình thường

Còn ai dis là "..."

5 tháng 5 2020

Ta có : \(\left(x-1\right)\left(y-1\right)\ge0\Rightarrow xy-\left(x+y\right)+1\ge0\)

\(\Rightarrow xy+z+1\ge x+y+z\Rightarrow\frac{y}{xy+z+1}\le\frac{y}{x+y+z}\)

Tương tự : \(\frac{x}{xz+y+1}\le\frac{x}{x+y+z}\)\(\frac{z}{yz+x+1}\le\frac{z}{x+y+z}\)

Cộng lại,ta được :

\(VT\le\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)( 1 )

Mà \(x+y+z\le3\Rightarrow VP=\frac{3}{x+y+z}\ge1\)( 2 )

Dấu "=" xảy ra khi x = y = z = 1

Từ ( 1 ) và ( 2 ) suy ra x = y = z = 1

Vậy ...

21 tháng 10 2020

2.

Nhân hai vế của phương trình với 6xy:
                   6y+6x+1=xy6y+6x+1=xy
Đưa về phương trình ước số:
      x(y−6)−6(y−6)=37x(y−6)−6(y−6)=37 
⇔(x−6)(y−6)=37⇔(x−6)(y−6)=37
Do vai trò bình đẳng của xx và yy, giả sử xy⩾1x⩾y⩾1, thế thì x−6⩾y−6⩾−5x−6⩾y−6⩾−5.
Chỉ có một trường hợp:
               {−6=37y−6=1⇔{=43y=7{−6=37y−6=1⇔{=43y=7
Đáp số:  (43;7),(7;43)
 

12 tháng 10 2017

đặt x2=a;x2+y2=b;x2+y2+z2=c

pt \(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

đến đó thì dễ rồi

17 tháng 10 2020

Ta có phương trình \(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2=3xyz\ge0\)

Ta lại có \(x^2y^2+y^2z^2+z^2x^2\ge3\sqrt[3]{\left(xyz\right)^4}=3xyz\sqrt[3]{xyz}\)

\(\Rightarrow3xyz\ge3xyz\sqrt[3]{xyz}\)

\(\Leftrightarrow1\ge\sqrt[3]{xyz}\ge0\)

\(\Leftrightarrow1\ge xyz>0\)

Vì x,y,z nguyên 

=> xyz=1

Vậy x,y,z là \(\left\{1,1,1;1,-1,-1;-1,-1,1;-1,1,-1\right\}\)

Cre: @tpokemont

27 tháng 5 2016

nhân 2 vế với 3xy =>3y+3x=xy+3=>\(\left\{y-3\right\}\left\{x-3\right\}=12\)

=>y-3;x-3 thuộc ước 12={-12;-6;-4;-3;-2;-1;1;2;3;4;6;12}

27 tháng 5 2016

Nhân cả hai vế với 3xy (Nhận được vì x , y nguyên dương) ta có: 

\(3y+3x=xy+3\Leftrightarrow3y-xy+3x-3=0\)

\(\Leftrightarrow y\left(3-x\right)+3x-9+6=0\Leftrightarrow y\left(3-x\right)-3\left(3-x\right)=-6\)

\(\Leftrightarrow\left(y-3\right)\left(x-3\right)=6\)

Từ đó ta tìm được x ,y.

Chúc em học tốt :)