Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nghĩ ra cách lm rồi nên lại đăng lên!!!
Xét hiệu \(\left(x^2+1\right)^2-y^2=x^2\ge0\Rightarrow\left(x^2+1\right)^2\ge y\)
Xét hiệu \(y^2-\left(x^2\right)^2=x^2+1>0\Rightarrow y^2>\left(x^2\right)^2\Rightarrow\left(x^2\right)^2< y^2\le\left(x^2+1\right)^2\)
Do đó: \(y^2=\left(x^2+1\right)^2\)
Thay vào phương trình ban đầu ta đc:
\(x^4+x^2+1=\left(x^2+1\right)^2\Rightarrow x^2=0\Rightarrow x=0\)
\(\Rightarrow y^2=1\Rightarrow y=\orbr{\begin{cases}1\\-1\end{cases}}\)
a)\(3^x-y^3=1\)
- Nếu x<0 suy ra y không nguyên
- Nếu x=0 => y=0
- Nếu x=1 =>y không nguyên
- Nếu x=2 =>y=2
- Nếu x>2 \(pt\Rightarrow3^x=y^3+1\left(x>2\right)\Rightarrow y^3>9\)
Ta suy ra \(y^3+1⋮9\Rightarrow y^3:9\) dư -1
\(\Rightarrow y=9k+2\) hoặc \(y=9k+5\) hoặc \(y=9k+8\) (k nguyên dương) (1)
Mặt khác ta cũng có \(y^3+1⋮3\) nên \(y=3m+2\) (m nguyên dương)
Từ (1) và (2) suy ra vô nghiệm
Vậy pt có 2 nghiệm nguyên là (0;0) và (2;2)
b)Xét .... ta dc x=y=0 hoặc x=1 và y=2
c)Xét.... x=y=0 hoặc x=0 và y=-1 hoặc x=-1 và y=0 hoặc x=y=-1
xy - 2x - 3y + 1 = 0
<=> x(y - 2) = 3y - 1
<=> \(=\frac{3y-1}{y-2}=3+\frac{5}{y-2}\)
Để x nguyên thì (y - 2) phải là ước của 5 hay
(y - 2) = (1, 5, - 1, - 5)
Giải tiếp sẽ ra
>>>>x^2-(2y^2+1-y)x+2y^2-y-1=0
>>>>delta=(2y^2+1-y)^2-4(2y^2-y-1) (tự tính nha bn)
có kq>>>để pt có no nguyên>>>>delta là sôc chính phương>>>xong
\(pt\Leftrightarrow y\left(y-1\right)=x^4+x^2+10\)
Vì \(x^2\left(x^2+1\right)< x^4+x^2+10< \left(x^4+x^2+10\right)+\left(6x^2+2\right)=\left(x^2+3\right)\left(x^2+4\right)\)
Nên \(x^2\left(x^2+1\right)< y\left(y-1\right)< \left(x^2+3\right)\left(x^2+4\right)\)
\(\Rightarrow y\left(y-1\right)=\left(x^2+1\right)\left(x^2+2\right)\) hoặc \(y\left(y-1\right)=\left(x^2+2\right)\left(x^2+3\right)\). Thay vào pt đầu giải ra ta dc
\(x^2=4\) hoặc \(x^2=1\) suy ra \(x=\pm1\) hoặc \(x=\pm2\)
- Xét \(x=\pm1\Rightarrow\orbr{\begin{cases}y=3\\y=-2\end{cases}}\)
- Xét \(x=\pm2\Rightarrow\orbr{\begin{cases}y=6\\y=-5\end{cases}}\)
a. \(x\left(x^2+x+1\right)=4y\left(y+1\right)\)
<=> \(x^3+x^2+x+1=4y^2+4y+1\)
<=> \(\left(x+1\right)\left(x^2+1\right)=\left(2y+1\right)^2\)là một số chính phương lẻ
=> \(x+1;x^2+1\) là 2 số lẻ (1)
Chứng minh: \(\left(x+1;x^2+1\right)=1\)
Đặt: \(\left(x+1;x^2+1\right)=d\)
=> \(\hept{\begin{cases}x-1⋮d\\x^2+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}x^2-1⋮d\\x^2+1⋮d\end{cases}}}\)
=> \(\left(x^2+1\right)-\left(x^2-1\right)⋮d\)
=> \(2⋮d\)(2)
Từ (1) => d lẻ ( 3)
(2); (3) => d =1
Vậy \(\left(x+1;x^2+1\right)=1\)
Có \(\left(x+1\right)\left(x^2+1\right)\) là số chính phương
Từ 2 điều trên => \(\left(x+1\right),\left(x^2+1\right)\) là 2 số chính phương
Mặt khác \(x^2\) là số chính phương
Do đó: x = 0
Khi đó: \(4y\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=0\\y=-1\end{cases}}\)
Vậy phương trình có nghiệm ( x; y) là ( 0; 0) hoặc (0; -1)
1/ \(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2zx+z^2\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)
\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)
Suy ra MIN A = \(-\sqrt{2}\)khi \(x=y=z=-\frac{\sqrt{2}}{3}\)
a) Đầu tiên ta thấy nếu \(y<0\) thì \(3^y\) không phải là số nguyên. Suy ra \(x^2-3026=-3^y\) cũng không phải số nguyên, vô lí vì \(x\) là số nguyên. Suy ra \(y\ge0\).
Nếu \(y=0\to x^2=3026\to\) loại vì \(3026\) không phải là số chính phương.
Nếu \(y\ge1\to3026-x^2\vdots3\to2-x^2\vdots3\to x^2-2\vdots3\) mâu thuẫn vì một số chính phương chia cho 3 không có dư là 2.
Vậy phương trình vô nghiệm nguyên.
b, Đầu tiên ta thấy nếu \(y<0\to2^y\) không phải là số nguyên. Do đó \(1+x+x^2+x^3\) cũng không là số nguyên, mâu thuẫn vì theo giả thiết \(x,y\in Z.\)
Xét \(y\ge0.\) Với \(y=0\to1+x+x^2+x^3=1\to x\left(1+x+x^2\right)=0\to x=0.\) Vậy ta có nghiệm \(\left(0,0\right).\)
Với \(y=1\to1+x+x^2+x^3=2\to x\left(1+x+x^2\right)=2\to2\vdots x\to x=\pm1,\pm2.\) Vì \(x+x^2=x\left(x+1\right)\) là số chẵn nên \(1+x+x^2\) là số lẻ, suy ra \(x=\pm2.\) Thử lại không thoả mãn.
Với \(y=2\to1+x+x^2+x^3=4\to x^3+x^2+x-3=0\to\left(x-1\right)\left(x^2+2x+3\right)=0\to x=1.\)
Vậy ta có một nghiệm nguyên nữa là \(\left(1,2\right).\)
Với \(y\ge3\to1+x+x^2+x^3=2^y\to\left(1+x\right)\left(1+x^2\right)=2^y\to1+x^2=2^a\) với \(a\) là số tự nhiên. Khi \(a=0\to x=0\to y=1\to\) loại. Xét \(a>0\to x\) lẻ \(\to1+x^2\) chia cho \(4\) dư \(2\). (Vì một số chính phương lẻ chia 4 dư 1). Vậy \(2^a\) chia cho \(4\) dư \(2\). Suy ra \(a=1\to x^2+1=2\to x=1\to2^y=4\to y=2\to\) loại vì \(y\ge3.\)
Tóm lại phương trình chỉ có 2 nghiệm nguyên như trên là \(\left(x,y\right)=\left(0,0\right),\left(1,2\right).\)
\(x^4+y+4=y^2-x^2\Rightarrow4x^4+4y+16=4y^2-4x^2\Rightarrow4x^4+4x^2+1+16=4y^2-4y+1\\ \)
\(\Rightarrow\left(2x^2+1\right)^2+16=\left(2y-1\right)^2\Rightarrow\left(2y-1\right)^2-\left(2x^2+1\right)^2=16\Rightarrow\left(2y-2x^2-2\right)\left(2y+2x^2\right)=16\)\(\Rightarrow\left(y-x^2-1\right)\left(y+x^2\right)=4\)
Do \(\left(y-x^2-1\right)+\left(y+x^2\right)=2y-1\)không chia hết cho 2 => y-x2-1 và y+x2 không cùng tính chẵn lẻ
TH1: y-x2-1 =1 và y+x2=4 => y=3 và x = 1 hoặc -1
Th2: y-x2-1 =-1 và y+x2=-4 => y= -2 và x2 < 0 => loại
Vậy x=1 hoặc -1 và y=3