Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có phương trình \(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2=3xyz\ge0\)
Ta lại có \(x^2y^2+y^2z^2+z^2x^2\ge3\sqrt[3]{\left(xyz\right)^4}=3xyz\sqrt[3]{xyz}\)
\(\Rightarrow3xyz\ge3xyz\sqrt[3]{xyz}\)
\(\Leftrightarrow1\ge\sqrt[3]{xyz}\ge0\)
\(\Leftrightarrow1\ge xyz>0\)
Vì x,y,z nguyên
=> xyz=1
Vậy x,y,z là \(\left\{1,1,1;1,-1,-1;-1,-1,1;-1,1,-1\right\}\)
Cre: @tpokemont
Gọi 1/4 số a là 0,25 . Ta có :
a . 3 - a . 0,25 = 147,07
a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )
a . 2,75 = 147,07
a = 147,07 : 2,75
a = 53,48
đặt x2=a;y=b
<=>a3-a+6=b3-b
<=>b3-a3-(b-a)=6
<=>(b-a)(b2+ab+a2)-(b-a)=6
<=>(b-a)(b2+ab+a2-1)=6
đến đây là phương trình ước số rồi,lập bảng là đc
Với gía trị nào của a 0<= a<=9 thì các số dạng 4...4aa..a mỗi cái có n cs và 11...1aa...a mỗi cái có n cs a đồng thời là tích 2 số tự nhiên liên tiếp
1) Vì \(2003 \equiv 2 \pmod{2}\)
Nên xảy ra các trường hợp sau:
TH 1: Một số chia 3 dư 1, 2 , số còn lại chia 3 dư 2
Giả sử : \(x=3k+1,y=3m+2,z=3p+1\)
Khi đó: \(VT \equiv 8 \pmod{9}\) hay \(2003 \equiv 8 \pmod{9}\) (vô lí)
TH 2: Một số chia 3 dư 0 ,2 số còn lại chia 3 dư 1
Tương tự như vậy ta cũng được \(VT \equiv 2 \pmod{9}\)
Hay : \(2003 \equiv 2 \pmod{9}\)
Vậy phương trình trên vô nghiệm
$x^{3}+y^{3}+z^{3}=2003$ - Số học - Diễn đàn Toán học
bài này ko khó nhưng mình ngại làm quá,thông cảm