K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2017

kẹp đi :v

15 tháng 5 2017

nói chuyện kỳ v

10 tháng 4 2017

Bước 1: Tìm \(\Delta\)và rút gọn

Bước 2: Để pt .. <=> \(\Delta\).. 0

Bước 3: Kết luận

Chúc bạn thành công =))))))

10 tháng 4 2017

Bổ sung thêm bước 2: Là phải giải bất pt hoặc pt nhé 

1 tháng 3 2020

b, \(\Delta'=b'^2-ac=\left[-\left(m-1\right)\right]^2-1.\left(-m-3\right)=m^2-2m+1+m+3\)

\(=m^2-m+4=m^2-m+\frac{1}{4}+\frac{15}{4}=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\)

Vậy pt (1) có 2 nghiệm x1,x2 với mọi m

Theo hệ thức vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\left(2\right)\\x_1x_2=-m-3\left(3\right)\end{cases}}\)

Ta có: \(x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)

<=>\(4\left(m-1\right)^2-2\left(-m-3\right)=10\)

<=>\(4m^2-8m+4+2m+6=10\)

<=>\(4m^2-6m+10=10\Leftrightarrow2m\left(2m-3\right)=0\)

<=>\(\orbr{\begin{cases}m=0\\m=\frac{3}{2}\end{cases}}\)

c, Từ (2) => \(m=\frac{x_1+x_2+2}{2}\)

Thay m vào (3) ta có: \(x_1x_2=\frac{-x_1-x_2-2}{2}-3=\frac{-x_1-x_2-8}{2}\)

<=>\(2x_1x_2+x_1+x_2=-8\)

13 tháng 1 2017

a)

\(\Leftrightarrow yz=z^2+2z+3\Leftrightarrow z\left(y-2-z\right)=3\)

\(\hept{\begin{cases}z=\left\{-3,-1,1,3\right\}\\y-2-z=\left\{-1,-3,3,1\right\}\end{cases}\Rightarrow\hept{\begin{cases}x=\left\{-2,0,2,4\right\}\\y=\left\{-2,-4,6,6\right\}\end{cases}}}\)

9 tháng 10 2017

Bài 1: ĐK:....

Cộng theo vế 3 pt trên ta có

\(2x+2y+2z=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\)

\(\Leftrightarrow4x+4y+4z-2\sqrt{4x-1}-2\sqrt{4y-1}-2\sqrt{4z-1}=0\)

\(\Leftrightarrow\left(4x-1-2\sqrt{4x-1}+1\right)+\left(4y-1-2\sqrt{4y-1}+1\right)+\left(4z-1-2\sqrt{4z-1}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{4x-1}-1\right)^2+\left(\sqrt{4y-1}-1\right)^2+\left(\sqrt{4z-1}-1\right)^2=0\)

Xảy ra khi \(\hept{\begin{cases}\sqrt{4x-1}=1\\\sqrt{4y-1}=1\\\sqrt{4z-1}=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}4x-1=1\\4y-1=1\\4z-1=1\end{cases}}\)\(\Rightarrow x=y=z=\frac{1}{2}\)