Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^2+4}-2\sqrt{x+2}=0\)
\(\Leftrightarrow\sqrt{x^2+4}=2\sqrt{x+2}\)
\(\Leftrightarrow\sqrt{x^2+4}=\sqrt{4x+8}\)
\(\Leftrightarrow\sqrt{x^2+4}^2=\sqrt{4x+8}^2\)
\(\Leftrightarrow x^2+4=4x+8\)
\(\Leftrightarrow x^2-4x-4=0\)
\(\Delta=\left(-4\right)^2-4.1.\left(-4\right)=16+16=32\)
Vậy \(x_1=\frac{4+\sqrt{32}}{2}\);\(x_2=\frac{4-\sqrt{32}}{2}\)
P/S: Ko chắc
\(\sqrt{x^2+4}-2\sqrt{x+2}=0.\)
\(\Rightarrow\sqrt{x^2+4}=2\sqrt{x+2}\)
\(\Rightarrow x^2+4=2x+4\)
\(\Rightarrow x^2+4-2x-4=0.\)
\(\Rightarrow x^2-2x=0\)
\(\Rightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)
Vậy .............
Study well
- \(\Leftrightarrow x^2-\sqrt{100}=0\Leftrightarrow x^2=10\Leftrightarrow x=\orbr{\begin{cases}x=\sqrt{10}\\x=-\sqrt{10}\end{cases}}\)
- \(\Leftrightarrow\sqrt{5^2\left(2x+1\right)^2}=10\Leftrightarrow5|2x+1|=10\Leftrightarrow|2x+1|=2\) vây
- nếu \(x\ge\frac{-1}{2}\) \(\Leftrightarrow2x+1=2\Leftrightarrow x=\frac{1}{2}\left(tm\right)\)
- nếu\(x< \frac{-1}{2}\Leftrightarrow2x+1=-2\Leftrightarrow x=\frac{-3}{2}\left(tm\right)\)kết luận nghiệm
Dễ nhận thấy pt này có một nghiệm là 1 nên ta sẽ tạo nhân tử là x-1
Ta có: \(2x^4+4x^3-7x^2-5x+6=0\)
<=> \(\left(2x^4-2x^3\right)+\left(6x^3-6x^2\right)-\left(x^2-x\right)-\left(6x-6\right)=0\)
<=> \(2x^3\left(x-1\right)+6x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)
<=> \(\left(x-1\right)\left(2x^3+6x^2-x-6\right)=0\)
<=> \(\orbr{\begin{cases}x=1\\2x^3+6x-x-6=0\end{cases}}\)
Bạn có thể giải pt 2x3+6x-x-6=0 bằng pp Cardano nha, cm dài lắm
Ta tách được \(2x^4+4x^3-7x^2-5x+6=0\Leftrightarrow\left(x-1\right)\left(2x^3+6x-x-6\right)=0\)
Vậy pt có 1 nghiệm x= 1.
Ta giải pt bậc ba theo công thức Cardano:
\(2x^3+6x^2-x-6=0\left(1\right)\Leftrightarrow x^3+3x^2-\frac{1}{2}x-3=0\)
Đặt \(x=y-1\Rightarrow y^3-\frac{7}{2}y-\frac{1}{2}=0\left(2\right)\)
\(\Delta=27\left(\frac{-1}{2}\right)^2-4\left(\frac{7}{2}\right)^3=-\frac{659}{4}< 0\)
Vậy pt (2) có 3 nghiệm phân biệt thuộc khoảng \(\left(-\frac{\sqrt{42}}{3};\frac{\sqrt{42}}{3}\right)\)
Đặt \(y=\frac{\sqrt{42}}{3}cost\left(t\in\left(0;\pi\right)\right)\). Thay vào pt(2) ta có: \(cos\left(3t\right)=\frac{3\sqrt{42}}{98}\)
Ta tìm được 3 nghiệm t thuộc khoảng \(\left(0;\pi\right)\), sau đó tìm cost rồi suy ra y và x.
Cô tìm một nghiệm để giúp em kiểm chứng nhé. Em có thể thay giá trị nghiệm để kiểm tra.
\(cos\left(3t\right)=\frac{3\sqrt{42}}{98}\Rightarrow t=\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}\Rightarrow y=\frac{\sqrt{42}}{3}.cos\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}\)
Vậy \(x=\frac{\sqrt{42}}{3}.cos\frac{arccos\left(\frac{3\sqrt{42}}{98}\right)}{3}-1\). Đó là một nghiệm, em có thể tìm 2 nghiệm còn lại bằng cách tương tự.
ĐK:\(x\ge2\)
\(\sqrt{x-2}\times\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow\sqrt{x-2}=0\)hoặc\(x^2-4x+3=0\)
\(\Leftrightarrow\hept{\begin{cases}x=1\left(loai\right)\\x=2\left(tm\right)\\x=3\left(tm\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}\left(tm\right)}\)